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Pendubot: Combining of Energy and Intuitive Approaches
to Swing up, Stabilization in Erected Pose

Yannick Aoustin, Alexander Formal’skii and Yuri
Martynenko

Abstract The objective of this paper is to define a strategy for the gwip of a double
pendulum and its stabilization in the unstable equilibrgtate with both erected links. This
double-link pendulum, usually called pendubot, is an uackerated system because it has
only one motor, which actuates the suspension joint. Thitediom the torque amplitude are
taken into account. Simulation results demonstrate thaswategy is efficient.
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1 Introduction

Motivation. The pendulums with more joints than actuators are mechiasystems, which

belong to the family of underactuated systems. They reptesdifficult challenge for the

control theory. The inverted pendulums can play the role dfdactic platform, see for
example [1], where usual digital controls are illustrateithvan inverted pendulum on a
cart, the so-called Cart-Pole System. The pendulum sysédirast also the attention of
researchers in control as a benchmark for testing and ewauaf control strategies, to
mention a little set of references only, see [2—-13].

For the pendulums usually two problems have to be taken ictouant, which are the
swing up to reach an upright unstable equilibrium and theiliation in this position.
For example with an Acrobot, which is a two-link pendulum,osh first link is not actuated
whereas the second one is actuated, authors of [2] and [fidgkdemethod in two stages. At
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first, a slow swinging up process, founded on a passivitgtapproach, brings the acrobot
close to the upright position. After a switching control tbaancing linear controller, the
pendulum is locally asymptotically stabilized around ipsight equilibrium position. A new
control law to swing up an Acrobot and to stabilize it in theigpt position is developed
in [15]. In [16] and [17], the underactuated planar revolutkot, usually called pendubot,
is presented. A pendubot is also a two-link pendulum with @oator at the shoulder, but
no actuator at the elbow. One very interesting distinctibthe pendubot over both the
classical cart-pole system and Furuta’s system is the maunti of equilibrium positions.
The partial feedback linearization technique is used tagdethe control that swings the
two links from their hanging stable equilibrium to the uhdéaerected position. A linear
state feedback is designed to balance the pendulum at tbee@requilibrium. The LQR
or pole placement technique can be used to find the feedbae&. ga [5], an algorithm
has been proposed to swing up a pendubot. This algorithngsitime pendulum close to
the top unstable equilibrium. The second link remains simigpgvhile getting closer and
closer to the top equilibrium. In [8] the swing up controllwitches to a hybrid controller
for feedback stabilization among the erected position oegperimental Pendubot. This
hybrid controller is composed of a continuous-time conpant, which contributes for partial
feedback linearization, and a discret-time control pahiciv can be regarded as cancelation
of the drift terms. A pendubot is also considered in [18]. Aiahle structure controller
from [19], based on the second order sliding mode methodesithe pendubot to a periodic
reference orbit in finite time. A modified Van der Pol oscifliais involved into the controller
synthesis as a reference model. The resulting closed-kxipra is capable of moving from
one orbit to another by changing the parameters of the VaRdescillator. In [20], authors
investigate some properties of the simple strategies fangng up a one-link pendulum
based on energy approach. The position and the velocityegditlot are not considered. The
global behavior of the swing up is completely characteriagdhe ratio of the maximum
acceleration of the pivot and the acceleration of gravitye $wing up and the stabilization
problems for the considered one-link pendulum with a lichiéetuator, are simultaneously
solved with a single, smooth law by authors. The idea is tpshihe potential energy and
to introduce in the control law an additional dumping or pimgpterm following the state
of the pendulum. In [21], the problem of the stabilization reedink inverted pendulum
around its homoclinic orbit is addressed. A control stratégised on an energy approach
of the cart and pendulum system is proposed to balance teeidovpendulum and raise it
to its upper equilibrium position while the cart displacernis brought to zero. A one-link
pendulum with an inertia-wheel is considered in [22]. Tagkinto account the limits of the
actuator, authors have designed a swing up control law. Witetsng time between the
swing up control and the stabilization control is defined bynparing the global energy
of the pendulum to its potential energy in the upright equilim and getting its basin of
attraction. Using the Jordan form of the equations of motilba authors extract the unstable
mode. Suppressing this unstable mode, they obtain a basittrattion, which is as large
as possible. The experimental results show the remarké#fitent of the design control.
Lai et al. [13] propose a unified treatments of the motion control ofaradtuated two-
link manipulators, including acrobots and pendubots. Tlobda stability of the control
system is analyzed and guaranteed by using arguments feohy&punov’s theory. In [23],
a stabilization control of a two-link inverted pendulum kvén inertia-wheel is designed for
the three unstable equilibriums. An approach of the noalimentrol design is proposed in
[24] for underactuated mechanical systems and result©bbgktabilization for an acrobot,
a Cart-pole system, an inertia-wheel pendulum, a rotatemdplum are presented. This
approach is based on an explicit change of coordinates amdotthat transform several



classes of underactuated mechanical systems into casoaliteelar systems with structural
properties that are convenient for the control design pepo

In literature for the swing up and the local stabilizatioragfendubot, to our best knowl-
edge, first, there is no explicit way to avoid antagonistizements of the swing links during
the process of swinging up. Secondly, during the processabflzation, it does not exist
a control law with saturation, founded on the basin of attoac(or its approximation, the
largest as possible) and treating explicitly the unstaliees.

Contribution. The paper proposes a control strategy that makes a pendptightuby
swinging up, and stabilizing the erected position. Thetbnoin the torque amplitude in the
suspension point are taken into account. The original &ivigccontrol scheme consists of
three parts:

— When the pendulum is in some neighborhood of the downwatthgegosition, a local
controller, based on the energy boosting algorithm, is eygal.

— When the pendulum is out of this neighborhood, a saturatatinear controller is used
in order to straighten the double-link pendulum (to makedse to a one-link pendu-
lum).

— When the pendulum reaches the basin of attraction of theghippiosition, a saturated
linear feedback is used.

The novelty in our control strategy is the following. We takéo account the limits im-
posed on the control torque. In the process of swinging wppéndubot with the designed
control performs a number of vibrations from side to sidehviitcreasing amplitude as a
one-link pendulum. Remind, under algorithm designed in {B¢ first link converges to
the top position after several initial oscillations, whitee second link performs oscillations
with increasing amplitude. Second, the gains of the sadrbslancing control are chosen
to ensure the basin of attraction as large as possible. Thg sy control switches to the
balancing mode at the instant when the system comes to tiredfastraction.

Structure of the paper. Section 2 is devoted to the model of the double pendulum. The
linearized model is recalled in Section 3. The statemenhefaroblem is defined in Sec-
tion 4. Section 5 presents the controls for the local stzddilbn of the double-link pendulum
in the unstable equilibrium posture. Section 6 is devotethéodefinition of the swing up
strategy. Simulation results are presented in Sectionnalllyj Section 8 presents our con-
clusion and perspectives.

2 Model Description of the Double-Link Pendulum

Let us consider a mechanical system with two rigid bodiesatiegh in Figure 1. The DC
motor actuates the suspension ja@it. But there is no actuator in the inter-link joift.
Let C; andC, be the centers of mass of the first and second link respectiVee center
of massC; is located on lingD;0O,. Let the following lengths b&®;0, =1, 0;C; =r; and
0,C, = 5. Letmy andmy, be the masses of the first and second links. The moment oiinert
of the first link about jointO; is denoted;, the moment of inertia of the second link about
joint O, is denoted,.

The generalized coordinates are the anglaady, Figure 1. The joint variable = y—¢
is also used in our study.

So, our system has two degrees of freedom, but one actudyothie system is underac-
tuated with a degree of underactuation, which equals onesi@er the following constraint



Fig. 1: Scheme of the double-link pendulum.

imposed on torqué, which is developed by the motor in the suspension pOint
IF| < o, Mo = const ()

The expressions for the kinetic energyand potential energhl of the two-link pendu-
lum are well-known:

2T = a110? + 28,1C08(Y — 0) Vb + a2y,
M = bycosd + bpcosy

Hereag; = l1 + mpl?, ay1 = mypral, ag = |y, by = (miri 4+ mpl)g, by = mprag (g is the
gravity acceleration).

LagrangiarL = T — I yields the following well known equations of motion:

11 + @21008(y — )y — @)
apsin(y— )y — bysing =T
31C08(Y— §)$ + azzy+ 3)

asin(y— ¢)¢2 — bpsiny=0

The angular momentur{ with respect to the suspension joi@§ of the double-link

pendulum is

K= g—l = a11¢ + ap1cos(y— )y (4)

System (2), (3) with” = 0 has the unstable equilibrium state:
¢€‘ = 07 2T[7 Ve = 07 2T[ (5)

We consider the problem to transfer the double pendulum ecetfuilibrium posture (5)
from the stable equilibrium posture

=1 y=m (6)



3 Linearized Model of the Double-Link Pendulum

In the last phase of the pendulum transferring process tdehiged final position, we stabi-
lize it. The linear model, but with limits (1) imposed on thentrol torque is used to design
the feedback for the stabilization. Let us denote the sttéov by

X= (¢7¢97 V7Y97*¢7 y)*
= (¢7 Y, 4)7 y) .

Star * means transposition. Equations (2), (3) linearizedrrhe equilibrium (5) have the
following matrix form:

X = Ax+ pl

021

| O2x2 l2x2 (7
_ [DflE OZXJX+ [D_1<1>] r
0
MatricesD andE are:
a1y ap by O

D= E = . 8
(auazz)’ (0 bz) ®

The determinant of the controllability matrix [25] of the dwl (7), (8) is

2 A2
b3a5, — )
(811302 — 359)
Value aj1a55 — a§1 = 0 because it is the determinant of the inertia matrix waitk O.
Thus, the linear model is Kalman controllable, if and onlyif4 0 andl # 0.
Introducing a nondegenerate linear transformatienSy with a constant matris, it is
possible to obtain the well-known Jordan form of the matruation (7)

y=Ay+dr (10)
whereA\ is a diagonal matrix
A0
A=S1AS= ,
0 A (11)

d=S"1p=[d, dy, ds, da]*.

Here,\1,...,A\4 are the eigenvalues of the matéx They are the roots of the characteristic
equation for the linear system (7) wikh= 0. This characteristic equation is biquadratic

aM +ar’+a,=0 (12)

because the system (2), (3) is conservative.



4 Statement of the Problem

The upright equilibrium posture (5) is unstable. The oleds to design a feedback control,
satisfying the constraint (1), to swing up the pendulum andtabilize it in this unstable
equilibrium posture.

We consider the problem of local stabilization of equilin (5) firstly, whereas the
stabilization is the last phase of the transferring pendufirocess. The asymptotic local
stabilization around the unstable equilibrium is realibede with an approach defined in
[26].

5 Local Stabilization of the Double-Link Pendulum

The coefficients of the characteristic equation (12) forstyetem (7), (8) are:

ap = ajjdx — a2, = detD > 0,
a; = — (a1l +axhy) <0,
a = b]_b2 =detE >0

The leading coefficiengy is positive because it is the determinant of the positivendefi
matrix D; a; < 0 becausey, ay», by andb, are positive values. Consequently equation (12)
has two real positive roofs;, A, and two real negative roodg = —A1, Ag = —A,.

We intend to design an admissible (satisfying the inequéli}) feedback contrar (x)
to ensure the asymptotic stability of the equilibrium state 0 of system (7) or (10) with
the largest as possible basin of attraction (the larger &éisenlof attraction, the more robust
the contraol).

Let us consider the first two scalar differential equatiohihe system (10), (11), corre-
sponding to the positive eigenvalugsandA;:

Yi=Ay1+dil, Yo =Azys +dol (13)

The system (7), (8) is Kalman controllable. Therefore, thiesystem (13) is also con-
trollable (see [25]) and; # 0, d, # 0.

Let W be the set of the piecewise continuous functibifly), satisfying the inequality
(1). Let Q be the set of the initial stateg0) of the system (7), from which origix = 0
can be reached, using an admissible control functicgihs € W. In other words, the system
(7) can reach the origir = 0 with controll (t) € W, only starting from the initial states
X(0) € Q. SetQ is called controllability domain. If matrix has eigenvalues with positive
real parts and the control varialdleis restricted, then the controllability doma@nfor the
system (7) is an open subset of the phase siacee [27]).

For any admissible feedback contiol= ' (x) (with the saturationl (x)| < o) the
corresponding basin of attracti@belongs to the controllability domail® C Q. Here, as
usual,B is the set of the initial stateq0), from which the system (7), with the feedback
I = I'(x) asymptotically tends to the origin= 0 ast — co.

The controllability domairQ’ of the system (13) in plang,, y, is an open bounded set
with the following boundaries (see [27], [28])

yi(T) = i% (2eMT—1),
' 14)
d2l o

yo(T) = i)\—z (2e'—-1) (0<T< )



The boundary of the controllability regidd has two corner points depicted in Figure 2:

B Mo _ 4 To.
Y1= dl)\—17 Yo = d27\21
(15)
_4 o _glo
Y1—d1)\1, )lz—dz)\2

These points (15) are the equilibrium points of the syste®) (ihder the constant controls:
r==4lo (16)

We can “suppress” the instability of equilibriuya = 0, y, = 0 of the system (13) by a
linear feedback control,
M= kiys +koy2 7)

with kg, k, = congt. It is shown in the paper [29] and the book [30] that using &din
feedback (17) with saturatiofs & const),

lo, it Bkays +kay2) > To
M= ¢ B(kiyr +kay2), if [B(kiy1+kay2)| <To (18)
—lo, if B(kay1 +koyo) < —Tg

the basin of attractioB’ of the system (13), (18) can be made arbitrary close to thiaen
lability domain@'.
The straight line crossing two points (15) is the following:

kiys +koy> =0

with

k1=—}\—2, |<z=)\—l (19)

signB = sign[didz (A1 — A2)]

and|B| — o, then the basin of attractid® of the system (13) under the nonlinear control
(18) with the coefficients (19) tends to the controllabiliggionQ’. Consequently, using the
gains (19), basiB’ (two-dimensional) can be made arbitrary close to dor@itf || — oo,
the control (18) tends to the bang-bang control.

Solutionsy; (t) andy,(t) of equations (13) with control (18) tend to O fas» « for
the initial valuesy;(0), y2(0), belonging to the basin of attractidi. But if y;(t) — 0 and
y2(t) — 0, then, according to the expression (18)) — 0. Therefore, solutiongs(t), ya(t)
of the third and fourth equations of system (10) with anyiahitonditionsys;(0), y4(0)
converge to zero as— o, because\z,A4 < 0. Thus, under control (18) with coefficients
(19), the basin of attractioB (four-dimensional) of system (10), (18) is described by the
same relations, which describe the basin of attradioftwo-dimensional) of system (13),
(18). BasinB (and controllability domairQ) is limited in unstable coordinateg, y. only.
The boundary of the basB is the periodical cycle of the system (13), (18). This cyaa c
be computed, using the backward motion of the system (18),f(ém a state close to the
originy; =y, =0.

Variablesy; andy, depend on the original variables from the vectpaccording to
transformationy = S-x. Due to this, formula (18) defines a nonlinear feedback chntr
which depends on vectarof the original variables.



According to Lyapounov’s theorem (see [31]), the equilibnistatex = 0 of the nonlin-
ear system (2), (3) is asymptotically stable under the cbiiti8) because system (2), (3),
(18) linearized near the state= 0 is asymptotically stable.

The double-link pendulum is here assumed with similar hoenegus links and param-
eters:

m, = m, = 0.2kg, | =0.15m, ' = 0.2N'm (20)

With parameters (20) the positive eigenvaldigsh; are the followingA; = 185611 A, =
6.920.

Using formulas (14) we design the controllability dom&hdepicted in Figure 2. The
boundary of this domain is shown in Figure 2 by dashed line;bibundary of the basin of
attractionB’ with B = 0.025 is shown by solid line. Ip = 0.1, then basi' is very close to
domainQ’ and it is difficult to see on the sketch the difference betwikem. In this case,
we can use domai@’ as a basin of attraction.

Fig. 2: The boundaries of the controllability doma&h (dashed line) and of the basin of attractih(solid
line) with B = 0.025.

6 Swing up Via Energy and An Intuitive Control

In this Section, we describe two stages of the developeddaoiithe process of the local
stabilization starts after these two stages.

6.1 Energy approach

The process of the double-link pendulum transferring fromgtable equilibrium (6) to the
unstable one (5) contains several phases. First, the pendslswinging up to increase its
total mechanical energly +IN. This energy in the desired unstable equilibrium statectvhi
is the upright position (5) equals to the potential enegy by + b,.



In the area
n—-Ad < ¢ <m+Ad (21)
the following control
[ o/, if$p>0
r‘{—ro/o, it <0 (22)

is used. Herd¢ = congt > 0, 0 > 0 are parameters, which we choose by simulation. Under
the control (22) (in area (21)), the total energy- N increases monotonically because its
time derivative changes according to the equality:

d(T+1)

2 =T = [¢lro/o (23)

6.2 Double pendulum straightening

Out of area (21) we try to keep anglenear zero, because= 0 in the desired upward equi-
librium state (5). Also straightening the double pendulura try to avoid the movements of
the links in the opposite directions. If angkeis close to zero, then the double-link pendu-
lum is "similar” to a one-link pendulum and it is naturally $wing up a one-link pendulum
with the control (22).

From system (2), (3) to make the exact partial input-outpatiback linearization such
that

8 = —C0 — C10, (24)
the control torque is:
[=Tyg= 78.21(4)+d)25ina — blsin¢+

(C10 4 Co01) (ap2ay 1 — @3,C0S%Q)
+ 25
a»x1COSa + apo ( )

(211 + @21€080) [D2SiN($ + O1) — Az1h?sinal]
ap1CoSal + a2

Herec; andc; are positive feedback gains. The denominator in expreg2mnis far from
zero, if anglea is close to zero. Under control (25), system (2), (3) hasefeshdently of
the behavior of anglé) an asymptotically stable solution:

at) =0 (¢(t) =v(t)) (26)
If the inequality (1) is taken into account, the saturatesticd law can be defined instead of
(25):
Mo, ifTg>To
M= Mg, if|lgl<Tlo (27)
—lo,i1f Tg<—To

Let us note:
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— If we puta = a = 0 in formula (25), then we obtain the following expression:

a1 +ap :
M= ——by,—bs ) sin
(321+azz 2 1) ¢

Under this control torque, the system (2), (3) has solutis).(
The simulation demonstrates that in order to straightetiiegpendulum it is also possi-
ble to use a simpler control than (25):

( a1+ a1

b, — bl) sing + c10 + o0
A1+ a2 ¢

— Consider system
a=v, [v|<w, Vo=cong (28)

The time-optimal controV(a, &), which brings system (28) to origim= & = 0 is [28,
32]:
V= —Vpsign(2voa + a|a]) (29)

Instead of the discontinuous function (29) it is better fog tealization to use the fol-
lowing continuous function
v=—vpth(t[2va +&la| ]) (30)

with T as parameter. Substituting expression (30) insteaccpfi — c,a in formula (25)

we obtain
[=T4g= —a21(¢ +d)23ina — blsintlH—

Voth(T[2voa + @|a| |) (agea11 — @3,c08%a)
3,1C0S0 + Ay, (31)

N (@11 + @1c080)[bpsin(d + a) — axidp?sina]
a»x1CoSa + apo

We also tested sucessfully this control (31) with severedip@ters/, andt on the stages of
the pendulum straightening.

Each stage of our control strategy is provided by mathemlaticnsideration. But the
demonstration of the efficiency of the complete controltetig is supported by successful
computer simulation and intuition only (see below).

7 Simulation

The double-link pendulum is simulated with the numericaiapaeters (20), and we have
chosem¢ = 11/12. But the control law is not very sensitive to the vali§e the value\p

in the interval[Tt/24, 11/6] are also acceptable. If the valM decreases, the time of the
swing up increases.

The appropriate coefficients = 12rad—* andc, = 1.2 s.rad~? of the feedback control
(27) are chosen in the simulation. The gainsc,, which significantly differ from the chosen
values can be also used successfully.

As we see in simulation under control (22), (27), the penautways from side to side
and its energyl + 1 increases "in average” (not monotonically). The stagehefenergy
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boosting (see control (22)) and the straightening of thedpkemm (see control (27)) are
alternating.

If value INp/0 is too large, the pendulum may race through the desiredibduih (5).
In simulation the valu@ = 7 is used. This means that with the control law (22) we do not
use all the resources of the actuator.

After several vibrations, control (22), (27) brings the bigulink pendulum close to the
upright position (5) with angular velocities close to zermul @o the basin of attraction. (Re-
mind we try to obtain the basin of attraction as large as ptes$iWwhen the system reaches
the basin of attraction, the control law (22), (27) switcbesthe stabilization control law
(18) (with 3 = 0.1). At this time, the phase of the pendulum stabilizatiorhie équilibrium
(5) starts. This is the last phase of the pendubot transfgpiocess.

To design a more robust control it is useful to increase thedficient o, when the full
energy becomes closer to the potential end?gy by + b, of the pendulum in the upright
position (5).

Unlike the control law (22), all the resources of the actuate used in the control laws
(27) and (18).

In Figure 3, the process of the pendubot swinging up andatsilgation in erected pose
is shown. The amplitude of angtevibrations becomes large initially, but after it becomes
small and the pendubot sways from side to side like a onepiéamdulum. (Note, control (22)
is natural to swing up the one-link pendulum.) The amplitafithese vibrations increases.
After some number of vibrations, at time .Z4s approximately, the system comes to the
basin of attraction and after to the desired equilibrium.

B

0 5 10 15 20 25

0 5 10 15 Time[sho 25

Fig. 3: Swing up with control (22), (27) and stabilizationsitate (5) with control (18 — 0,a — 0, — 0.

In Figure 4, the graph of the total ener@y+ N is shown. The energy increases "in
average” and at the end becomes the desired corBtarit; + b,.
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5 10 15 20 Time[s] 25

Fig. 4: Swing up with control (22), (27) and stabilizationsirate (5) with control (18)T + N — by + by.

In area (21), instead of (22), the control law
_ f Fo/o, ifK>0
r*{—ro/o, if K <0 (32)

can be also used. Hei€ is the angular momentum (4). In Figure 5, the corresponding
process of the swinging up and stabilization is plotted. faimal amplitude of the angle
a vibrations is less than with control (22).

10
¢ W\
0 i h i i
0 5 10 15 20 25
2
1k :
a
OM[M\NWVV
-1 i i i i
0 5 10 15 20 25
0.2 T T T T
02 i i i ] i
5 10 15 Time[sho 25

Fig. 5: Swing up with control (32), (27) and stabilizationsitate (5)¢$ — 0 with control (18),a — 0, — 0.

Using the designed controls we can bring the pendubot tophight position (5) not
from the initial downward position (6) only, but also fromnse another initial states. For
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example, Figure 6 shows that it is possible to erect bottslistarting from the state =11,
y=T+T1/3 (0 = 1/3), = y= 0, which significantly differs from the state (6).

Itis obviously that the double-link pendulum can be transie to the stable equilibrium
(6) from any initial state. Thus, the control law that trarsfpendulum from the downward
equilibrium (6) to the upward equilibrium (5) ensures thiiebal stability of this upward
equilibrium.

P W

0 5 10 15 20 25

i i i
0 5 10 15 20 25

5 10 15 Time|[sho 25

Fig. 6: a(0) = 1/3, Swing up with control (32), (27) and stabilization in st@b) with control (18)$ — 0,
a—0,—=0.

8 Conclusion

The pendulum systems become an exciting topic in the cotitemry. The object of this
paper is a double-link pendulum. This pendulum belongs ecfaimily of the double-link
pendulums, so-called pendubot. A theoretical and numestady is done with simulation
of its swing up and stabilization in the unstable equilibrigtate with two erected links. The
strategy is founded on the nonlinear control law. This adng based on the combining of
the energy and intuitive approaches. The number of parasjethich are needed to find
by simulation is small. Furthermore all of them have a phaissense. Under the designed
feedback control, the pendubot performs a number of vibmatirom side to side with in-
creasing amplitude as a one-link pendulum. At every cycleslghtly increase the energy
of the system.

We have successfully developed and tested two energy hgaatjorithms and several
algorithms to straighten the pendulum.

The basin of attraction is a natural criterion to define théawng time between the
swing up process and the stabilization of the pendulum irethelibrium state. The larger
the basin of attraction, the more robust the control law redshorter the duration of the
erection process. Thus, it is important to have a basin aibn as large as possible. The
basins of attraction for the nonlinear model and for thedimaodel are close. We think that
our study is of a theoretical interest and is also intergdtin the education. The simulation
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tests demonstrate that the perspective of our swing upacenid the stabilization of an
experimental two-link pendulum is realistic.
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