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Abstract

The purpose of our research is to study the effects of circular arc feet on the biped walk with a
geometric tracking control. The biped studied is planar and is composed of five links and four actuators
located at each hip and each knee thus the biped is underactuated in single support phase. A geometric
evolution of the biped configuration is controlled, instead of a temporal evolution. The input-output
linearization with a PD control law and a feed forward compensation is used for geometric tracking. The
controller virtually constrains four degrees of freedom (DoF) of the biped, and one DoF (the absolute
orientation of the biped) remained. The temporal evolution of the remained system with impact events
is analyzed using Poincamap. The map is given by an analytic expression based on the angular
momentum about the contact point. The effect of the radii of the circular arc feet on the stability is
studied. As a result, the speed of convergence decreases when the radii increases, if the radius is larger
than the leg length the cyclic motion is not more stable. Among the stable cyclic motion, larger radius
broadens the basin of attraction. Our results agree with those obtained for passive dynamic walking on
stability, even if the biped is controlled through the geometric tracking.

1 Introduction

Over the past several years a considerable amount of studies have been proposed on biped walking.
choice of type of feet such as a contact points, flat feet and circular arc feet is important, because walkit
stability is essentially affected by the contact with the ground. Control methods of many traditional hu:
manoids with flat foot are based on zero moment point (ZMP) that remains inside the convex hull of th
foot support using the ankle torque. There are lots of successful results, but the gaits seem not to be
natural. On the other hand, for a biped with point contact a geometric tracking method for biped walking
using input-output linearizatidn® produces stable gait that seems quite natural. (The idea of the geometric
tracking can be seen in the previous studies of Furtiahd Kajita®) Grizzle, et ak proposed the method

for a three-link model, only two outputs are controlled, the reference are expressed as a function of the bip
state. Zero dynamics with an impact event of the controlled system were analyzed by @oietland. The
effectiveness of geometric tracking has been verified on a platform called '"Rag#g: 1 left) with point

feet. Westervelt, et dl.gave some additional results to show capability for robustness, changing averag
walking rate, and rejecting a perturbation by 'one-step transition control’ and 'event-based control'.

In the domain of passive dynamic walking mechanidfi,is shown that a biped with large radius
circular arc feet can take easily a lot of steps. The prototype Emu (Fig.1 right) can be equipped with variot
arc feet with different rad®® . In previous walking experiments the biped Emu is excited by gravity or
forced oscillation of the length of legs. If the feet radius is 10% of leg length, the biped could only take few
step$§ excited by the effect of gravity because of the sensitivity to disturbances produced by the cables, tt
guide to avoid lateral motion and so on. The biped could not walk by the forced oscillation. In the case C
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Figure 1: Biped bipeds, “Rabbit” (left) and “Emu” (right).

a radius which is 97% of leg length, the biped Emu (Fig.1 right) can take easily few dozen &flsyaps
gravity and the leg oscillations. The step number is limited only by the space of our laboratory. The effec
of the radii of circular feet was significant for our results, but the change of radius is also accompanied b
other difference in physical parameters, thus a direct conclusion on the experimental study is not obvio
and a more rigorous study must be done. In fact, the same results are well known in the field of passi
dynamic walking as it is mentioned in Section 2.

The geometric tracking method that was used for the underactuated biped Rabbit can be extended
the case of underactuated biped with circular arc feet. If the biped has the circular arc feet, the analytic
stability study given by Chevallereau, et*atan not be applied directly. The contact point between the
supporting foot and the ground moves forward during the step in this case. The same difficulty appears al
in a flat feet model. For this problem, Djoudi and Chevallet€aave a solution to analyze the stability
with a chosen evolution of the ZMP.

The purpose of the paper is to show the effects of the circular arc feet for an underactuated plan
biped controlled by a geometric tracking method. The effect of the feet shape on the control properties
obviously depending on the walking strategies. Therefore it is significant to clarify the effect of the feet
shape on the geometric tracking even if it is well known in the passive dynamic walking field.

A model of our biped is composed of five links. Prismatic knee joints are employed to avoid the foof
clearance problem which occurs in association with large foot, not actuated ankle and rotational knee joir
A geometric evolution of the biped configuration is controlled, instead of a temporal evolution. The input:
output linearization with a PD control law and a feed forward compensation is used for geometric tracking
The temporal evolution is analyzed using Poigcarap. The map is given by an analytic expression based
on the angular momentum about the mobile contact point. The effect of the radius of the circular arc fes
on stability and the basin of attraction is revealed by analytic calculation. It is compared to the effect o
radius of the circular arc feet on passive dynamic walking. Section 2 presents an overview of previot
studies on the circular arc feet. Section 3 gives the biped model. It is composed of a dynamic model and t
impact model (instantaneous double support). Section 4 presents the control method. Section 5 gives
stability analysis. Some simulation results are shown and some discussion on the effects of the feet rad
is developed in Section 6. Section 7 concludes the paper.
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2 Previous studies on Biped with Circular Arc Feet

A circular arc feet for the biped are often treated in the field of passive dynamic watkibis well known

that a passive dynamic walking gives an extremely natural gait. McGeer showed that an eigenvalue of t
“speed mode” came to unit when the radius of a circular arc foot approaches the length of legs, and tl
eigenvalue becomes unit for synthetic wheel which has the foot radius equals to the leg length. The “spe
mode” was related to dissipation of energy at the impact.

Wisse, et al® showed that the larger feet radius, the larger amount of disturbances is accepted in e
periments. The robustness against disturbances is connected to the size of a basin of attraction for walki
Wisse explained in the other papethat “The walker will fall backward if it has not enough velocity to
overcome the vertical position. Circular feet smoothen the hip trajectory and thus relax the initial velocity
requirement. As the result, the basin of attraction is enlarged.” However a decisive study on the effect «
circular arc feet on the basin of attraction has yet to be performed. Recently, Wissé® giratented a
stability analysis of passive dynamic walking with flat feet and passive ankles. The effect of the flat fee
was analogous to the effect of the circular arc feet for many properties in the sense that ZMP smoothly at
monotonically moves forward from heel to toe. However he pointed out the need of validation for a more
accurate model of the heel strike transition. Asano and® discussed similar effect between the circular
arc feet and the flat feet with actuated ankles.

Adamczy, Collins and KuY studied the centre of mass (CoM) mechanical work per step with respect
to foot radius for various simple models of biped powered by an instantaneous push-off impulse undke
the stance foot just before contralateral heel sttk@&hey also showed relationships between foot radius
and metabolic costs from measured via respiratory gas exchange. The data are collected through hur
walking with feet attached to rigid arc, and they conclude that the most effective walking is obtained whel
the foot radius equals to 30% of leg length. Geometrically speaking, feet length should be at least twice
the product of the coxa angle between two legs and the radius of¥d@terefore one might choose the
radius as 13 of a leg length with an angle 0.3 rad between two legs, in order to make an anthropomorphi
biped, as McGeer wrote.

Thus for anthropomorphic models, 1/3 of leg length seems to be desirable in the sense of geomet
between step length and feet lengthsfoot clearance problent® and energy costs’

3 The Biped Modeling

A biped presented in Fig.2 is composed of a torso and two symmetric legs which consist of the prismat
frictionless knees and the circular arc feet. The hips are rotational frictionless joints. We assume that tt
contact point does not slip and the biped walks in a vertical sagittal plane. The @eetidr, I2,01, 62, 03]’

(* ' " means transpose) of configuration variables (see Fig. 2, left) describes the shape of the biped duri
single support; is the length of leg, 6;,i = 1,2 is the angle between the torso and theile@s is the
absolute angle of the supporting leg. The contact point between the biped and the grdiyndTise
lowest point of the swing leg tip is notdd. The actuator torques and forces are expressed by a vector
= [, 2,3, 4)'. The absolute orientation of the bip€d is not directly actuated. Thus, in a single
support (SS), the biped is an under-actuated system. The walking gait consists of single support pha:
separated by impacts, which are instantaneous double supports where a leg exchange takes place.
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Figure 2: The biped model: Left: coordinate of the model. Middle: physical parameters. Right: impaci
model.

3.1 Dynamic Model for Single Support Phase

The dynamic model can be written as follows:
D(8)8+H(8,0) = B, (1)

whereD € 0°*° is the inertia matrix, the vectdd € (° contains Coriolis, centrifugal and gravity terms.
B € 05%4 defines how the inputs enter the model. Due to the choice of joint coordinates, the mBtigx
written as:B = [l4,04x1]’.

3.2 Impact model

To derive an impact model, an general dynamic model is written:
De(8)8e + He(Be,8) = Bol + DR (B)R.. )

whereBe = [0/, x1,yH]', andxy andyy are the Cartesian coordinates of the hip positirshown in Fig.2
(right), De € 07*7 is the inertia matrix, the vectdt, € 07 contains Coriolis, centrifugal and gravity terms.,
R = [Ry,Ry]" is a ground reaction force vector applied at the contact pd@gtc 074 andDg € 07*2
defines how the inputs andR; enter the model,is the number of the leg in contact with the grouns 1,
i=2,0ri=1,2.

When the leg rolls on the ground, the contact with the ground occuns;inf leg i touches the ground
and since, we assume that no sliding occurs, the positidhisfON = [—R83, 0], whereO is defined such
that for the current step, the point contact is in O wBeis zero. This position can also be calculated by :
ON = OHp +HpCi +GiN; (Fig. 2, middle). Thus, we have :

{ o } - l e (+I.(E g)iiggei R } ' 3)

Therefore, the following constraint equation is obtained:

.| X1 +RE3+(li—R)sinB3 |
Il_[Y:—R—s(li—R)CosGsS]_o' ()
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Equation (4) is differentiated twice with respect to time, to obtain a constraint on the joint acceleration:
Dﬁi O+ CRr (Be, ee>ée =0. )

whereDg = 0W¥;/06. andCr comes from the derivation.

We assume that the impact is inelastic and instantaneous without sliding, laetd6, be the angular
velocities just before and just after the impact, respectively.lhet [Imx, Imy]’, fori = 1,2 be the vector
of magnitudes of the impulsive reaction at the contact point of the stance and the swing leg. During th
impact, the previous supporting leg can stay on the ground or take-off. If the leg takes off, the velocity o
Nz after the impact is positive. The impulsive ground reaction associated to a leg that stays on the groul
must be positive and be in the friction cone. If the supporting leg takes off, the associated impulsive grour
reaction is zero. The impact occurs when the leg tip of the swing leg contacts to the ground. To take int
account the two cases, the following impact equation can be written:

De(6) (6 — 65 ) = DR(6)Im
I ©)

where,

Dr,(8), Yy, >0 S Tmy W, >0
DR(e) { DRlz(e), Imyl > 0 Imyz > O ’ Im_ Iml27 Imyl > O7 Imyz > O ’

w®=| %% ple | me= | ]

From Eq. (6), we obtain:
6 = (I7x7— Dg'DR(DRDg 'Dr) DR) - 6 ()

Before and after the impact, the biped is in contact with the ground on at least one leg, fiysan be
calculated as function @&, andxy,y+ can be calculated as function &f Equation (7) can be transformed
into an equation 08, 6 only.

6t =A(0)6, (8)

whereA(8) € 0°° is the impact matrix. This matrix depends on the foot radiu#n the gait studied, the

legs swap their roles from one step to the next, thus since the biped is symmetric, the dynamic model
derived only for the support on leg 1. And the leg exchange is taken into account just after the impact. Tt
state of the biped to begin the next step is :

0 =T sBf, 6 =T.s0", BT =A(B¢)6s, 9)

whereT_ s € 0°*° is the permutation matrix describing the leg exchange, the indexeenoted the initial
and final states of the biped for one step.

4 Control law

Since the studied biped is underactuated, and since some good results have been obtained for the cor
of underactuated biped with point contéct,our strategy for walking is to control four variables, such

5
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that they track the reference defined with respect to the monotonic vaéablde four variables that are
controlled are grouped in vectbr= [hy,hp, hs, hy] = [682 — 01,063 — 01 + T 11,12)', composed of the angle
between two legs, the absolute angle of the torso, and the leg lengths, (shown in Fig. 2, middle). This vect
h, plusB3 defines the configuration of the biped. The relation with ve8tisrthe following:

hs 0 0 10 0
hy 0 0 01 0
0= —hp+ 03 =10 -1 0 O0|h+|1(63 (10)
hy —hy+ 03 1 -1 00 1
03 0 0 00O 1
00 00
6= —h+_—_——06s. 11
SN+ 50, (11)
Where and g~ ae are the constant matrices given in (10). Thus we have also:
06, 00 .
0= %th 0—9393 (12)

The control law is based on a computed torque control law and is such that the behavior of the controlle
variables are:

h=h? —Kp(h—hd) —Kgq(h—h?). (13)

But the reference to follow is a function of the variaBlgthus the reference is:

h' = h'(6s) (14)
hd = 332(9@9 (15)
.. 2pd .

R AT (16)

Thus the desired behavior in closed loop is given by:

. dhd d2hd - dhd
h = Fag(60)6e-+ gz (888 — Kl —'(85)) —Ka(h— - (B)s). (17)
This expression is denoted:
. dnd
h=—"(083)83+Vv(6,6). (18)
dos

The dynamic model (1) can be expressed as functidnasfdds using (12)

(e)(gﬁh + 60—99393) +H(8,0) = (19)

The torques will be calculated in order to have in closed loop the behavior given in (18), thus the torque
must satisfy:
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06 dr 8. 089 . :
bl _— — H =Br 2
(0)((31 ga, (89) + 5,83+ 5 v(6.8)) +H(6.6) =B (20)

Since the biped is underactuated, all the motion are not possible and based on the expression of ma
B, the admissible accelerati®g can be deduced. The dynamic model is decomposed into two sub-models.
The first sub-model is composed of the first four lines and allows to calculate the torque. The secor
sub-model is composed of the fifth line and allows to calculgter his sub-system gives:

. —D5(0)2v(8,0) —Hs(0,0
65 = o )ageghd ) 529 )’ (21)
Ds(6) (3 ds; (83) + 6;)
where the index 5 refers to th&'3ine of matrixD and vectoH.
Finally, the control law is obtained:
90 dhd 00 .. 06 : .
r= D174(9)((%d—93(93) + 0—93)93 + %V(ea 0)) +H14(6,0), (22)

where the indexes, 4 refer to the first four lines of matri® and vectoH.

5 Stability analysis

With the control, the output vectdr converges to the reference path8s), and if the reference function
is such that the impact condition is satisfied, the output is zero step after step for convenient choice of i
control gainK, Kq.18

5.1 Reference path

Since the initial and final configurations for a single support are double support configuration)®wien
given,B3 can be deduced from geometrical relations. Thus the initial and final vallgasoof one step are
known and denoteflz; andB3¢. Since the condition of the impact is a geometrical condition, if the control
law has converged and & has a monotonic evolution, the configuration at the impact is the desired one.
The reference function is designed such that the impact condition is satisfied. According to equations (¢
(9), and (11), the reference path must be such that:

0(63) = T sO(Bar). (23)
96 and 00 . 00 ohd 00 .
(%0_%(93')+0_E)3,)63' = TLSA<931‘)(%6_63(931‘>+6_93)93“ (24)

Equality (24) is composed of five scalar equations, I%Q:ZISegi) andgsi‘f can be calculated as function

of 2—32(93f). The ration of velocities is denotey:

_ &

5'93 = Bar

(25)
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5.2 Principle of the stability analysis

With the control law, the output vectdrconverges to the reference p&fh(8s). In the following section
we assume that = hd(93), that is, the system tracks the reference path. The five degrees of freedom (DoF
of the biped can be reduced to one DoF of a virtual equivalent pendulum under the condition, and we wi
hence analyze stability of the pendulum instead of the original biped.

This condition does not mean that the biped motion is cyclic with respect to time since the tempore
evolution of83 is the result of integration of Eq. (21), and thus depends on the referench@sh. For
a SS phas8@z must evolve monotonically frorfig to 83¢. The temporal evolution of the biped during a SS
phase is completely defined by the velodtyfor one particular valu@s. The stability analysis is based on
the Poincag return map, and this return map will be built just before the impact, when the biped is in the
conflguratlorhd(egf) B3¢. The variable that is effective to study the convergence to a cyclic motig is
Since the angular momentum is proportlonaﬁm the angular momentum (or its square value) can also
be used in the stability analysis

5.3 SS phase

According the Newton-Euler second law, as the gravity is the only external force that produces a torqt
aroundNs, the equilibrium of the biped in rotation around the mobile contact pgirgives:

G, + MViy, % Vg =Ny G x Mg, (26)

whereVy, andVg are the velocities at the point§ = [—R03, 0]’ and the center of mas§,= [xg,Yg|’, M is
the total mass of the biped, the gravity vectogis [0, —g]’, andoy, is the angular momentum abo.
The general expression of, is:

N =) M NG xVai+ ) liwg (27)
| |
whereG; is the center of mass for the linkm, andl; are the mass and the inertia of linky; is the angular

velocity of linki, andVg; is the linear velocity of5;. This quantity is linear with respect to the joint velocity
component and can be written:

— 5(0)6 (28)
We assume that the biped follows reference path thus we have:
00 4 00
6 = ahh (03) + ﬁes (29)
: 06 ohd 00 ;
6 = 9h20; ——(83)B3+ 6_6363' (30)
Thus the angular momentuay,, (28) is rewritten:
00 ohd 00 :
S(e)(ah 365 (03) + 364 )9 =lg,(63)03. (31)

Equation (26) can be developed using the expressid)t;@f Vi, W, as:

dyc(03) 42

oN, = —Mg(xc(83) + RB3) + MR 363

03. (32)

8
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Equation (31) is combined to Eq. (32) to express the derivativenpfwith respect tz, under the
assumption thafiz is monotonic:

don, _ dys o,
d6s Mg(xG+R63)o +MRde3 o, (33)
A new variable¢ = oﬁ,l/z Is introduced, to transform Eq. (33) into an equation that can be integrated
analytically:
dg
—a = Ki(83) +2K2(63)E, (34)
dés
K1(83) = —Mg(XG+RO3)lg,,

MR [0dys(6)'ded
k2(8s) = |93( 08 ) des

Equation (34) is a first order ordinary differential equation lineaf.imfherefore, a general solution can be
obtained, for a step that begins wlll as a initial value:

£(83) = O34B3)(83)+V(83), (35)
63

555(93) = exp(/e_ K2(T2)d'l'2>, (36)

V(B3) = /G:S exp (/T193 2K2(T2)d'[2) K1(T1)dTs. (37)

¢ andV are a pseudo-kinetic and a pseudo-potential energies of the virtual equivalent pendulum, respe
tively.

As a consequence fs; is known 83 can be deduced for the current step as a functiov ahd dss
without integration of (26). To be able to deduce from this equation the evolutigifasfd in consequence
of o, and@3) step after step, the evolution dfat the impact must be taken into account. In the following
section, the indek will be added to denote the number of the current step

5.4 Impact phase
Let us consider the impact between steasdk + 1. Using (31)¢ at the end of stefis:

1 :
Ek(B3f) = E(le3f (83¢)031 k) (38)

and¢ at the beginning of the stép+ 1 is:

1 .
€kt1(63i) = 5 log (031)03i+1)? (39)
Using (25), and defining, by,
O = lg,(03i)/le,(B3f), (40)
we obtain:

Ekr1(Bai) = B75F Ei(Ba1). (41)
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5.5 Poincale map
Combining (35) and (41), the final value &from thekth step to thek + 1)th step is as follows:

Eki1(3f) = &%(O3f)&k(Bar) +V (Baf), (42)
3(63f) = Os9031)didy,, (43)

whereBs; is the value 0B3 just before the impact. This equation describes the Pdnoap.

If a cyclic motion exists, thedy,1(03¢) corresponds t@x(0s¢). Thus, a fixed poin€¢(0s¢) is given
using (42) as follows:

0
£c(Bar) = 1 g (44)

Since&q(03¢) is positive,V (83¢) and 1— &%(83¢) must have the same sign. The following cases can occur:

Case 1: From (42), the fixed point is stable)f8s¢) < 1. Therefore, i®?(83¢) < 1 andV (83¢) > 0, then
an asymptotically stable cyclic motion exists.

Case 2: If62(93f) =1andV(03;) =0, from (42),&x1(03¢) = &k(B3f ), namely, all motions are cyclic.

Case 3: From (42), the fixed point is unstabledts¢) > 1. Therefore, i5*(83¢) > 1 andV (83¢) < 0,
then an unstable cyclic motion exists.

Case 4:V(83)(1—5%(83f)) < 0, no cyclic motion exists.

Since by definitiorf > 0, from Eq. (35) for the complete stefy, must satisfy the following inequality:

—V(83)
Eo(Bar) > Emin = Max—o (95 .

(45)

to haveg (03) > O for 83 betweerfs andBs;.

Since a product of the two variable§, (y,) is the ratio of momentunwy, at the contact poinig
before and after the impact, the speed of convergence is mainly associated with this ratio (This point will k
detailed in the following sections), and connected to the distance between the contact points and velocity
the mass center before the imp&tt.

The contact point before the impact, at the end of the single support phase, is ddpadtesl contact
point after the impact, at the beginning of the next single support phase, is dépotegding equilibrium

relation it is possible to compute the change of angular momentum around the contact point at impact
function of the value of the radii.

The distancel between thé\; andNs is (see Fig.2)
NiN2 = d = 2(1 — R)sin(hy/2). (46)

The angular momentum before the impact denaxtﬁldis calculated arountll; and can also be calcu-
lated around\y, it is then denotedy,, the angular momentum transfer gives:

Oy, = O, —M-d-JG. @7)

At the impact, considering the vertical componkgy; of the impulsive ground reactidg, in the pointNy,
the equilibrium in rotation arouni, gives:

10
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Table 1: Physical parameters for the dynamic model

ms 1[kg] [ls 0.05%ma | & 0.4[m]| Iy 0.8~0.85[m]
mi;  1[kg] | I+ 0.0%gma | fy 0.2[m]|l2 0.75-0.8 [m]
my 15[kg]|lp 3Bk | S 0.1[m]| R 0~1.0[m]

N

o 0
o o
‘“ o o \\
I . I . I
04 ’ 04 |
o 0
o 0
o o
o o
Cra— I oo s R TR T— TR . o

Figure 3: The stick diagrams of walking. The foot rai= 0 [m], 0.2 [m], 0.5 [m] and 0.7 [m] from the
left figure.

e 02 o

wherelny, is the vertical component of the impulsive ground reactigrapplied by the ground ii;. The
vertical equilibrium of the biped at the impact s :

|my1+|myz:M(yé_y(_3>7 (49)

wherelny, andlmy, are the vertical components of the impulsive ground reactignandlm, respectively
in the pointsN; andN,. The impact are such that the two legs stay on the ground)us 0 andlpy, >0

and we have:
0< lmy, <M(YE—Yg)- (50)
As a consequence, combining (47), (48), and (50), we have:
on, —M-d-y§ <oy, <oy, —M-d-yg, if d>0, (51)
O, = Oy if d=0, (52)
On, —M-d-yg <oy, <oy, —M-d-yg, if d<O. (53)
Whenlg, > 0 (see Fig.7) anfs < 0 (see Fig.4)oy, < 0. Considering (25), (31) and (40), the rab@, is
bounded:
Vo V&
1-M-d- =% <38, <1-M-d- =%, (d>0), (54)
O-Nl O-Nl
310y, =1, (d=0), (55)
V& Vo
1-M-d- 28 <8, <1-M-d- =5, (d<0) (56)
Oy, Oy,

6 Simulation

In simulations, the physical parameters of the biped shown in Fig.2 are used (see Table 1). The gains
the control law are chosen so that tracking errors can be smaller thdrfdrOall walking gaits{shewn-n

11
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Angle [rad]

48.5 49 49.5 50 48.5 49 49.5 50 48.5 49 49.5 50 48.5 49 49.5 50
Time [s] Time [s] Time [s] Time [s]
Absolute angle of the torso Angular velocity of the torso Leg tip height Leg tip height velocity
0.01
o 0.03
-0.0185 é 0.1
- £ 0.005 _ 0025 - 0.05
g _ = E 0.2 € [
g -0.019 3 £ o E o 1
S 2 0 5 0.015 £ -00s
& -0.0195 & 3 o001 s -01
3 -0.003 > 015
5( 0.005
—-0.02] -0.2
-0.01 0
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Figure 4. Time responses at the cyclic motion Wik 0.5 [m] of the angle of the both legs, the torso, the

length of legs and the leg tip. The reference paths are very well tracked.

Table 2: Torso angles. The angles are chosen such that cyclic motions have the sanig(@ajue=
§(—0.12) = 16.27.

Foot radius [m] 0 0.1 0.2 0.3
Angle of torso [rad]| -0.060 -0.051 -0.043 -0.034

Foot radius [m] 0.4 0.5 0.6 0.7 0.8
Angle of torso [rad]| -0.026 -0.018 -0.011 -0.004 0.002

Ea-(54).
Kp = diag([10°,10%, 10,5 x 107))
{ Kq = diag([5 x 107,5 x 107,10%,5 x 107)) (57)
6.1 Design of Reference Path
The reference pathf is defined by a fourth order polynomial function such that:
hg(83) = al1, 63, 63, 63, 0], (58)

wherea € 04 is a coefficient matrix for the referenbg. An intermediate position of SS phase, positions
and derivative with respect #just before the impact are given in order to calculate the coefficients of the
reference paths (see Fig.3). Position and derivative with resp@cifter the impact are calculated by Eq.s
(23) and (24) .

Walking is depending on not only the radii of feet but also of the reference path of the length of the
legs. The foot radius reduces the velocity of the CoM before the impact. The reference paths of the legs &
chosen to smoothen the vertical variation of the CoM. However the references of the legs are affected |
the impact, and the choice of the reference paths is limited accordingly. The radius mainly smoothens tl
vertical CoM motion.
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Figure 5: CoM positions with respect to R. Left: the case of our biped shown in Fig.2. Tangent vectors a
right ends of lines are expressing a post-impact velocity of CoM. Right: the case of a simple model witl
rigid legs and circular arc feet. CoM is located at hip position. When B.8 [m], CoM velocities are
upward. It gives a contradiction at the impact or there would be a flight phase.

The initial and the final length for the both legs are chosen as the same value. The final velocity fa
the biped are arbitrary fixed. The intermediate configuration for the legs is chosen such that the swing ¢
length decreases 0.02 m and the stance leg length increases 0.01 m during the step to avoid that the sv
leg tip touches the ground and the length of the legs is 0.8 [m] at the impact. Therefore the top position ¢
the CoM is almost the same for each foot radius as shown in Fig.5. For oneR/aligechoose the angle of
the torso at the impact arbitrary. The angle of the torso at the intermediate configuration is equal to 110
of the value of the torso angle at the impact. The corresponding &alfex ) is deduced. For example, the
coefficient matrix in Eq.(58) foR= 0.5 is obtained as follows:

0 ~302 -0.158 708 109
a _ | —0.0201 00002 0255 -0.0106 —8.89 (59)
R=05— 1 0810 -0.122 -158 850 612

0.780 —-0.0037 191 0254 365

Then from this reference motion we deduced the reference motion for the other value of theRradius
The angle of the torso at the impde{( 03¢ ) is adjusted such that the cyclic motions for all foot r&ihave
the same valué.(8s¢) as shown in Table 2.

Fig.3 shows examples of stick diagrams of walking for one step with the footRad [m], 0.2 [m],

0.5 [m] and 0.7 [m] and the step angle =0.24 [rad]. A cyclic motionRoe 0.5 [m] is given in Fig.4.
CoM positions with respect tB are shown in Fig.5. Tangent vectors of right ends of lines are expressing a
post-impact velocity of CoM. The variation of CoM velocities at the impact are presented in Fig.6.

Energy excitation for continuous walking with smaller feet radius is mainly done by the asymmetric
mass distribution due to the torso forward inclination. Leg swing also provides a way of putting energy. Fo
small feet radii, the energy for walking is produced by the weight of the torso that is inclined forward. For
larger feet radii, the energy for walking is produced by the motion of the swing leg.

Since the impact equation changes, the initial configuration and velocity are changed accordingly. Du
ing the impact, for the chosen reference path, the two legs stay on the ground.

6.2 Stability Analysis

The variables in the analytic solution (35) are shown in Fig.7 with respect to the monotonic végable
for various values of the foot radid® It should be noted that the monotonic variable is evolving from a

13
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Figure 6: CoM velocities at the impact with respecRoTl he point corresponds to different valueRofrom

0 to 1, the abscissa of the point gives the horizontal velogityespectively before and after the impact,
the ordinates gives the vertical velocity respectively before and after the impact. The vertical velocities
before the impact are always directed downward.

1.03F

Figure 7: Analytic solutions for SS phase. The figuresfér@y Eq. (36).V by Eq. (37), the functiotg,
by Eq.(31) and by Eq. (35) from the leftB3 evolves from positive (A2) to negative{0.12).

positive value to a negative valugs : 0.12 [rad]— —0.12 [rad]. In Fig.7,&c(0) is given for all the cyclic
motions. It can be observed thag83r) = £(—0.12) = 16.27. The figure oB2463) is given by Eq. (36).
The convergence of Poindamap, as shown in Eq. (43), is function&q6sf) = 834 —0.12). However
the values 06§5(—0.12) are very close to unit thus the convergence of Pomaoaap is essentially defined
by the impact map §(03¢) ~ & 93, The second figure from the left of Fig.7 represents the evolutiah of
defined by Eq. (37). These functions are essentially affected by the evotutibime third figure of Fig.7
shows the ternfg, given by Eq. (31)lg, is always positive and has not large variation.

This first study concerns reference path with an interlink angle at the impact equakttpadl]. For
this value, the evolution cﬁés(egf),&, 6-93 andd(03¢) are given in solid line in Fig.8, as function of the
The cyclic motion is stable fdR < 0.8.

In order to determine if the radiuR = 0.8 is a limit of stability only for one specific reference path
or if this limit is more physical, different kinds of reference motion are considered in the following. Only
the interlink angleh; (B3¢ ) at the impact is changed. For different valuesipeind radiiR, the coefficient
involves in the convergence condition are drawn in Fig.8.

66-3 andg, increase whemR increases antl; (031) decreases from Fig.&? also increases at the same

time. The termd? comes to unit wheR = 0.8 [m] which means thaR has the same values as the length of
legs at the impact.

Remark 1 We confirmed in another simulations that variations of the torso angle had small influences or

14
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Step angle = 0.04[rad]

0.999r

T
Step angle = 0.04[rad] |

Foot radius R [m] Foot radius R [ oot radius K [m] Foot radiusR (1]

Figure 8: Slope of the Poindareturn map. Step angle which means angles between two legs at the impac
varies from 0.04 [rad] to 0.40 [rad]. The figures shdgy 6-23, 6,293 and®? with respect to the foot radii

R= 0~ 1.0 [m] from the left figure.R = 0.8 [m] means that the radius is the same as the leg length at the
impact for the analytic solution. F& = 0.8 [m], the cyclic motion is not stable.

o, and 693 although it essentially affecés The variables V dss lg, and§ in the analytic solution for SS
phase change for the torso angle. However the variatiobsgfs smaller than the variations @& andd;,
with respect to the foot radii. A

Fig.9 presents the stability property with respect to the foot radii. Two black rigid lines $haad
& — 1. V andd® — 1 have opposite sign thus a cyclic motion may exist such that (45) is satisfied for any
value of radiiR. ForR < 0.8 [m], the motion is stable. Fd® > 0.8 [m], the motion is unstable. Fé&t= 0.8
[m], the motion is neutral, in this case any valiggroduces cyclic motions.

Case corresponding to a radius superior to the length of eachReg0(8 [m]) can be studied if we
consider that the motions of feet are not in the same sagittal plane to avoid collisions. In the leg exchanc
at the impact, the contact point moves back but the contact point has a large forward progression during t
single support phase, the biped goes forward.

The gradien®? (Eq. (43)) of Poinca map (Eq. (42)) depends on the SS phasg @nd the impact
phase § - 9y,). dsswas close to unit at the impact. Singg < y& < 0 (see Fig.6), we obtain that the foot
radiusR and the sign ofl defined the position of the rat®d;, with respect to 1 from Eq. (54) to Eq. (56).

° ifR<I,d>0,and6|693<1
° ifR:I,dzO,and6|693:1
° ifR>I,d<0,and6|693>1

The property of the gradied¥® agrees with “speed mode” of passive dynamic walking obtained by
McGeer!? Wissé® finds results that are different from our results. For passive walking he finds that
for stability point of view the best radius is 14% of leg length, this value corresponds to a case wher
two monotonic lines of eigenvalues are crossing. The increasing one is represented 'Speed mode’, &
the decreasing one is "Totter mode’. However the crossing point changes with respect to slope angle a
physical parameters of bipeds. The 14% of leg length is not the best radius, generally speaking. In o
controlled system, it is predictable that the 'Totter mode’ is close to zero or much smaller than the 'Spee
mode’, since the 'Speed mode’ is expressed by the zero dynamics of the controlled system and the 'Tot
mode’ is depending on the controller gains. Tedfrhas the same property of the 'Speed mode’, and thus
is increasing with respect f. In our case we are not interested in the best solution but in the limit where
stability exists, thus there are no contradiction with the results of Wisse.
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Figure 9: The property of stability with respect to the foot r&iiTwo black rigid lines show andd? — 1.
V andd® — 1 have opposite sign thus a cyclic motion may exist such that (45) is satisfieB <6r8 [m]
the motion is stable. FdR > 0.8 [m] the motion is unstable. F& = 0.8 [m] the motion is neutral, that is
all of &¢ are cyclic motions.

6.3 Basin of Attraction

Basins of attraction determined by numerical computations are shown in Fig.10. The larger the foot rac
are in the stable domain, the wider the basin of attraction is but the slower the speed of convergence is.
the foot radius is the same as the leg length, the motion is neutral, that is, all motions are cyclic.

In Fig.10, the area between the lineégf,, and¢ .« is the basin of attraction. The varialfgust before
the impact is used for expressing the basin of attraction. Thetlimepresents the cyclic motions. Fig.11
presents time evolutions @&, 03 for 100 steps. The following foot radii are considerd&:= 0 [m], 0.5
[m], 0.8 [m] and 1.3 [m]. The first two cases are clearly stable, the ¢&s€0.8, is neutral, and the case,
R= 1.3, is unstable. Simulations confirm the existence of the neutral condition.

The property of the basin of attraction with respect to the radius is also analogous to the results of passi
dynamic walking by Wissé3 As depicted in Fig.10, the bottom line shows minirgatorresponding to
&min- It means a required minimal angular momentum to overcome a gap from a minimum of a vertica
position of CoM to a maximum. If the momentum is smaller than the minimum, the complete step is no
achieved, the step begins and then the robot goes backward to return to its initial configuration for the ste
After that, the robot stops, but it does not fall down contrarily to a passive dynamic Waikat falls down
backward.

From Fig.5, the smaller the radius is, the larger the gaps of the vertical positions of CoM and the minime
min @re. Thus the circular arc feet broaden the minimal bounds. The variation of the maximal bounds |
caused by limits on the vertical reaction forces to avoid taking-off. The reaction force YWabthe point
N is given by the following equation:

| Rq | | MXs
Rl_{Ryl}_{M(VGJrg)} (0)
The vertical accelerationsis decided by the the centrifugal force caused by the angular velocity of the
stance legds and an acceleration of the leg variatib(t). The radius smoothens the variation of CoM,
and consequently the centrifugal force is reduced. We observe that the acceleration of the leg is smal
when the radii increase. Thus, the maxirggl, is extended when the radius increases. Namely, the basin
of attraction is broaden by physical properties such as the feet radii. Globally, our controlled system he
similar properties for stability and basin of attraction to the passive dynamic walking.
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Figure 12: Consumed energy for one cyclic step w.r.t. the foot radii R by the numerical simulation. The
torso angle is chosen so tifat 16.27 by the analytic solution for all R.

6.4 Consumed Energy

Consumed energies for one cyclic step with respect to the footRaslidescribed in Fig.12. The following
formula is used for computing the consumed energy:

T .
Ec:/ & -B.Tdt. (61)
0

The larger the foot radius is, the smaller the consumed energy is for the cyclic motion, even if the motio
becomes unstable. Thus, the circular arc feet are effective in reducing the consumed energy.

6.5 Optimal Radius

There is a trade-off property between the convergence speed, the basin of attraction and the energy c
sumption. What we can say is that the nearer the radius is to the leg length, the slower the speed
convergence is and the larger the basin is. 'Foot clearance problem’ does not appear because of the vari
length legs in our case. In the cases of 'Anthropomorphic Model’ and 'Simplest Model’ of Adamczyk’s
result!’ the CoM mechanical work property with respect to feet radii is similar to our result of consumed
energy. However, in their cases of 'Forward-foot Model’ and 'Kneed Model’, the work had a minimum.

The suggestion of McGeer’s to choose a foot radius of 1/3 of leg lengths can also be considered in o
discussion. It might be better to choose a larger radius (e.g. between a half and three quarters) to hav
large basin of attraction even if the speed of convergence is worth.

6.6 Unstable Walking with radii greater than the leg length

Kuo’s analysi$® of the CoM velocity contradicts our study because he considers a simple model with rigid
legs and circular arc feet and the CoM is located at hip position, and we consider prismatic knees. T}
right of Fig.5 presents the evolution of the CoM relative to the simple mbd@angent vectors of right
ends of lines are expressing the pre-impact velocity of CoM, and tangent vectors of left ends of lines al
expressing the post-impact velocity of CoM. When-R.8 [m], the change of CoM velocities are upward,
which means the impulsive force at the impact is negative. It actually would be a flight phase. Left part @
Fig.5 gives the CoM evolution in the case of our biped shown in Fig.2. Since all of the ranges of velocitie:
of CoM at the impact are downward, it never fails to flight phase for any radius. In fact, our biped has
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prismatic knees and CoM is mainly distributed on the torso which is swinging a little. A lot of paths can be
chosen for the CoM position differently from the simple model.

7 Conclusion

In the paper, some effects of circular arc feet for a planar biped via a geometric tracking were taken int
account. An analytic solution of Poin@amap was given for the controlled system. Stability of walking
was analyzed by the Poinéamap and the following results are obtained:

¢ Radii of the circular arc feet affect the stability of walking, and the speed of convergence decrease
when the radii approaches to a leg length.

e A basin of attraction is broadened by choosing larger radii and the controller can stabilize the bipe
walking in the largest basin of attraction for the radii less than the leg length.

The leg length and the radius smoothen the variation and reduce the impact velocity. From the properties
the reference paths, The radius of the foot has a significant effect for the stability and the basin of attractic
The results are analogous to tht%s& and the prospett on passive dynamic walking. The geometric
tracking method does not change the general effect of the circular arc feet. A reduction of the vertic:
CoM variation by the foot radius is functional not only for the geometric tracking method but for general
biped walking. However the motion of CoM and the consumed energy are different from some very simpl
models because our model has variable length of legs and a torso.
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