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Abstract The development of an algorithm of parametric optimizatomchieve optimal
cyclic gaits in space for a thirteen-link 3D bipedal robottwiwelve actuated joints is pro-
posed. The cyclic walking gait is composed of successivgeisupport phases and impul-
sive impacts with full contact between the sole of the feek e ground. The evolution of
the joints are chosen as spline functions. The parametefsfitwe the spline functions are
determined using an optimization under constraints on yimahic balance, on the ground
reactions, on the validity of impact, on the torques and @njtints velocities. The cost
functional considered is represented by the integral oftehgues norm. The torques and
the constraints are computed at sampling times during @petstevaluate the cost func-
tional for a feasible walking gait. To improve the convergenf the optimization algorithm
the explicit analytical gradient of the cost functionalhwéespect to the optimization param-
eters is calculated using the recursive computation oft#esqThe algorithm is tested for a
bipedal robot whose numerical walking results are presente
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1 Introduction

The design of walking cyclic gaits for legged robots and ipatarly the bipeds has at-
tracted the interest of many researchers for several decBde to the unilateral constraints
of the biped with the ground and the great number of degreé®efiom, this problem is
not trivial. Intuitive methods can be used to obtain walkgaits as in [1]. Using physical
considerations, the authors of [1] defined polynomial fiomg in time for an experimental
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planar biped. This method is efficient. However, to build gebial robot and to choose the
appropriate actuators or to improve the autonomy of a bigeaptimization algorithm can
lead to very interesting results. In [2] the Pontryagin’spiple is used to design impact-
less nominal trajectories for a planar biped with feet. Hamvethe calculations are complex
and difficult to extend to the 3D case. Furthermore the atigguations are not stable and
highly sensitive to the initial conditions [3]. As a conseque a parametric optimization
is a useful tool to find optimal motion. For example, in robstibasis functions as poly-
nomial functions, splines, truncated fourier series aedus approximate the motion of
the joints, [4], [5], [6], [7], [8], [9] and [10]. The choicefmptimization parameters is not
unique. The torques, the Cartesian coordinates or jointdioates can be used. Discrete
values for the torques defined at sampling times are usediasizgtion parameters in [11].
However it is necessary, when the torque is an optimizecbbaj to use the direct dynamic
model to find the joint accelerations. Then integrationsused to obtain the evolution of
the reference trajectory in velocity and in position. Thuis ipproach requires much calcu-
lations: the direct dynamic model is complex and many evaloa of this model are used
in the integration process. In [12], [13], [14], [15], [16)][or [17] to overcome this diffi-
culty, the parametric optimization defines the referenagttories of Cartesian coordinates
or joint coordinates for 2D bipeds with feet or without feAh extension of this strategy
is given in this paper to obtain a cyclic walking gait for a 3ipdd with twelve motorized
joints.

The evaluation of the cost criterion requires multibodytegsdynamics computations.
The gradient of the criterion necessary in the optimizagimtess is usually solved numer-
ically through the finite difference method. This fact leédlan ill-conditioning and a poor
convergence. Furthermore with finite difference approxioms for the gradient, round-off
errors appear. Then it is not possible to ensure a boundetitcennumber for the approx-
imated Hessian. The optimization algorithms can stop prerely [18]. Therefore some
papers proposed optimization algorithms with the exaclyéingradient, [19], [8] and [9].
The problem of the optimal control and the recursive dynarbi@sed computer animation
with the derivation of the explicit analytic gradients neddn the dynamic equations is ad-
dressed in [19]. The inverse dynamics model and the deraativith respect to the path
parameters, useful for the evaluation of the gradient amdHbssian are computed recur-
sively for the general class of multi-body systems addikssd8]. A walking gait with
double support phases is designed for a five-link planardbigthout actuated ankles in [9].
The calculation of the analytic gradient for the criteriamdathe constraints is made for
this walking gait taking into account the characteristitthe over-actuated phases (double
support), the under-actuated phases (single supportharichpacts.

A step (a half stride) of the cyclic walking gait is uniquelyroposed of a single support
and an instantaneous double support which is modeled biwpasgulsive equations. This
walking gait is simpler than the human gait. But, with thismple model the coupling effect
between the motion in frontal plane and sagittal plane castindied. A finite time double
support phase is not considered in this work currently beedor rigid modeling of robot,
a double support phase can usually be obtained only wheretheity of the swing leg tip
before impact is null. This constraint has two effects. la tontrol process it will be diffi-
cult to touch the ground with a null velocity, as a consegeehe real motion of the robot
will be far from the ideal cycle. Furthermore, large torqaes required to slow down the
swing leg before the impact and to accelerate the swing I¢igealbeginning of the single
support. The energy cost of such a motion is higher than aomatith impact in the case
of a planar robot without feet [16], [9]. The evolution of jpivariables are chosen as spline
functions of time instead of usual polynomial functions teyent oscillatory phenomenon



during the optimization process (see [16], [20] or [21]) eTdoefficients of the spline func-
tions are calculated as functions of initial, intermediatel final configurations, initial and
final velocities of the robot. These configuration and veloeariables can be considered as
optimization variables. Taking into account the impact #relfact that the desired walking
gait is periodic, the number of optimization variables idueed. In other study the period-
icity conditions are treated as equality constraints [d2je cost functional considered is
the integral of the torque norm, which is a common criterionthe actuators of robotic
manipulators, [4] and [23], [16] and [24]. During the optiration process, the constraints
on the dynamic balance, on the ground reactions, on theityadilimpact, on the limits of
the torques, on the joints velocities and on the motion vglad the bipedal robot are taken
into account. Therefore an inverse dynamic model is caledlduring the single phase to
obtain the torques for a suitable number of sampling timesimpulsive model for the im-
pact on the ground with complete surface of the foot sole @fsthing leg is deduced from
the dynamic model for the biped in double support phase. Tthesipossible to evaluate the
criterion cost, the constraints during the single suppodtat the impact.

The dynamic model for a 3D biped with twelve degrees of freed® more complex
than for a 2D biped with less degrees of freedom. So its coatiputcost is important in the
optimization process and the use of Newton-Euler methodikoutate the torque is more
appropriate than the Lagrange method usually used. Thehd@D biped, in single support,
our model is founded on the Newton Euler algorithm, congmgdethat the reference frame
is connected to the stance foot. The walking study includgsacts. The problem solved
in [19] and [8] is to obtain an optimal motion beginning at aeyi state and ending at
another given state. Furthermore authors used Lie thedoetnulation of the equations of
motion and the analytic gradient. In our case the objectvi® idefine cyclic walking for
the 3D Biped. Techniques from Lie group theory are avoiderhbse for rigid bodies in
serial or closed chains, recursive ordinary differentigliaions founded on the Newton-
Euler algorithm is appropriate [25]. Then the explicit aialgradient of the cost functional
with respect to the parameters for the optimization prohkeoalculated using the recursive
Newton-Euler algorithm to obtain the torques.

The paper is organized as follows. The 3D biped and its dynanoidel are presented
in Section 2. The cyclic walking gait and the constraintsdafned in Section 3. The opti-
mization parameters, optimization process and the costiimal are discussed in Section
4. The calculations to obtain the analytic gradient areildetan Section 5. Furthermore a
summarize of the global optimization process is given intiad. Simulation results are
presented in Section 6. Section 7 contains our conclusidrparspectives.

2 Model of the bipedal robot
2.1 Biped model

An anthropomorphic bipedal robot with thirteen rigid linksnnected by twelve motorized
joints to form a serial structure is considered. It is congabsf a torso, which is not directly
actuated, and two identical open chains called legs whiele@nnected at the hips. Each leg
is composed of two massive links connected by a joint caliegek The link at the extremity
of each leg is called foot which is connected at the leg byrat jralled ankle. Each revolute
joint is assumed to be independently actuated and ideati¢iniess). The ankles of the
bipedal robot consist of the pitch and the roll axes, the &remsist of the pitch axis and
the hips consist of the roll, pitch and yaw axes to constigubgped walking system shown



in figure 1. The action to walk associates single supportgshaeparated by impacts with
full contact between the sole of the feet and the ground, dhmedel in single support, and
an impact model are derived. The dynamic model in single @utpp used to evaluate the
required torques thus only the inverse dynamic model isssgg. The impact model is
used to determine the velocity of the robot after the impiet torques are zero during the
impact, thus a direct impact model is required.

The periodic walk studied includes a symmetrical behavieemthe support is on right
leg and left leg, thus only the behavior during a step is caeghuhe behavior during the
following step is deduced by symmetry rules. As a consequienty the modeling on right
leg in support is considered in the following.

2.2 Geometric description of the biped

For a planar robot any parametrization of the robot can be, ieea 3D model of robot with
many degrees of freedom a systematic parametrization obbwt must be developed. Many
studies have been conducted for the manipulator robot,ttteuparametrization proposed
for the manipulator robot is re-used for the walking robdteTirst difficulty is to choose
a base link for a walking robot. Since the right leg is in supplairing all the studied step.
The supporting foot is considered as base link.

To define the geometric structure of the biped walking systenassume that the link
0 (stance foot) is the base of the bipedal robot while the lidKswing foot) is the terminal
link. Therefore we have a simple open loop robot, which thengetric structure can be
described using the notation of Khalil and Kleinfinger [ZBje definition of the link frames
is presented in figure 1 and the corresponding geometriaveeas are given in table 1,
where:

— a(j) denotes the frame antecedent to the frgme
— The geometric parameteraj( 6;, rj, d;) determine the location of the framewith
respect to its antecedeat)).

The frameRy, which is fixed to the tip of the right foot (determined by thiglth |, and the
lengthL ), is defined such that the axdgis along the axis of frontal joint ankle. The frame
Ry is fixed to the tip of the left foot in the same wayRs

2.3 Dynamic model in single support phase

During the single support phase, our objective is only tedeine the inverse dynamic
model. The joint position, velocity and acceleration arewn. The actuator torques must
be calculated. Since the contact between the stance foothanground is unilateral, the
ground reaction (forces and torques) must also be deduded NEwton-Euler algorithm
can be adapted to determine the ground wrench [27].

During the single support phase the stance foot is assumeaiain in flat contact on
the groundj.e., no sliding motion, no take-off, no rotation. Therefore tliygdal is equivalent
to a 12-DoF manipulator robot. Lgtc R*? be the generalized coordinates, wheye.., gi»
denote the relative angles of the jointge R'? and§ € R*? are respectively the velocity
vector and the acceleration vector. The dynamic model iesgmted by the following rela-
tion



Fig. 1: The multi-body model and link frames of the bipeddiab

{Fﬂ = NE(q, 8,8, Rus) )

wherel™ € R1? is the joint torques vectoR, € R is the ground wrench (forces and mo-
ments) exerted by the ground on the stance footRyad: R represents the wrench, exerted
by the terminal link on the ground. In single support phRsg= Og1.

2.3.1 Newton-Euler algorithm

The Newton-Euler method permits to calculate the dynamicdehas defined in equa-
tion (1). This method proposed by Luh, Walker et Paul [28] @sdx on two recursive
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Table 1: Geometric parameters of the biped.

calculations. Associated with our choice of parametrirathe following algorithm is ob-
tained [27]. The forward calculation, from the base (stefoog) to the terminal link (swing
foot) determines the velocity, the accelerations and tked forces and moments on each
link. Then the backward calculations, from swing foot tans&foot, gives the joint torques
and reaction forces using equation of equilibrium of eack $iuccessively.

Forward recursive equations

Taking into account that the bipedal robot remains flat orgtieeind, the initial condi-
tions are

O = Ogx1, % = Ogy1 and Vo= —[g 0 O]t (2
the real acceleration F§/o = 0gx1 but, the choice to WritéVo = —[g 0 0]', whereg is the
gravity acceleration, allows to take into account the dyesffect.

For the link j with its associated framB;, and considering the link — 1 as its an-
tecedent, its angular velocitw;, and the linear velocityV; of the originO; of R; are

j(x)j = jcoj,1+6j q; iaj 3)

. . . ! o

ij = JAj_l (] le_1+] loojile) +0j q; 'aj 4)
with JAj_3, the orientation matrix of the fran®_; in the frameR;, o; = 0 when the joint
j is arevolute jointo; = 1 when the jointj is prismatic joint ands; = 1— 0}, 'a; is a unit

vector along the; axis, ' ~P; is the vector expressing the origin of frarRein the frame
R;j_1. The angular acceleration of linkand the linear acceleration of the origdj of R; are

i(}oj

S o A
]Aiflu)j,1+0 (qj Jaj +! ooj,lqj’aj) (5)

.. . P . P P " . ./\ . i
JV]- = ]Aj_l (] le_l-l-J 1Uj_1] le)+0'j (C]j 'a,-+21wj_1qjjaj> (6)

! A SAEA
wherelU; = 1o +) wj 1wy



The total inertial forces and moments for the lipkre

ijZMj jVj+jUijSj @)

ij ij j(l)j+j(.A0j (ij j(x)j)Jrj MASjVJ (8)
with 1J; inertia tensor of the link with respect to the framg;, IMS; is the first moments
vector of the linkj around the origin of the frami; andM; is the mass of the link. The
antecedent link to the link O (stance foot) is not defined.tReriteration of the stance foot,
only the equation$7) and(8) are used.

Backward recursive equations

The backward recursive equations are given asj ferl2,...,0

jfj = ij +j fj+1

=1, = -1, O, ©)
. . . H A i

ij = ]Mj +! Aj+1 J+lmj+l+] PJ+1 ]fj+1 (10)

wherelf; is the resultant force, exerted on the lipby its antecedent and by the actuators
i imj is the resultant moment, exerted on lifkby its antecedent and by the actuator
j. These recursive equations will be initialized by the feremd moments exerted on the
terminal link by the environmerfif,,,; and"my,1. In single supportf,,; =213 = 03,1,
"Mpi1 =2 M3 = 03,1, With Ry3 = [*?f13,22my3]'. Whenj = 0, Rg = [0, mo]* represents
the ground reaction force and moment expressed in the fRyme

If we neglect the friction and the motor inertia effects, tbeque (or the forceJ , is
obtained by projectingn; (or f;) along the joint axis;)

L
M= (0 'fj+0;'m;) g (11)

I is not defined, since there is no actuator.

2.3.2 The zero Moment Point (ZMP) position

The ground reaction wrench is known in the fraRe This frame is associated with the
stance foot, and the axyg, zo defined the sole of the stance foot. The position ofZMP
which is the point of the sole such that the moment exertedheytound is zero along the
axisyp andz, is such that:

0

Yzmp = —gr— f:xbz (12)
0
Zzmp = % (13)
X

If the position ofZMP is within the support polygon, the biped robot is in dynangaiéb-
rium, the stance foot remains flat on the ground.



2.4 Impact model for the instantaneous double support

At the impact, the previous supporting foot becomes the gyant, and its velocity after
impact can be different from zero. As a consequence the rimodef the biped must be
able to describe a non fixed stance foot. Since the dynamiehisdalculated with the
Newton-Euler algorithm, it is very convenient to define tiedoeity of the link 0 with the
Newton variablesV the linear velocity of the origin of the frami&, and wy the angular
velocity. For the impact model, or the double support modekiped’s position is expressed
by X = [Xo,00,q]' € R8, Xq andag are the position and the orientation variables of the
frame Ro; the robot velocity isV = [?V,%wp, @' € R'8 and the robot acceleration \6 =
[°Vo,” éo, 8" € R*.

2.4.1 Dynamic model in double support

The impact model is deduced from the dynamic model in doulgbpaert, when we assume
that the acceleration of the robot and the reaction forc®aex delta-functions.

The dynamical model in double support can be written:
D(X)V +C(V,q) + G(X) + D1zRi3 = DrT + DoRo (14)

whereD € R*®*18 js the symmetric definite positive inertia matr@,c R*® represents the
Coriolis and centrifugal force§ € R8s the vector of gravityRo = [°fo,°mo]! is the vector
of the ground reaction forces on the stance f&at = [1%f13,2m3] represents the vector of
forces exerted by the swing foot on the groubdp, Dr andDg are matrices that allow to
take into account the forces and torques in the dynamic model

The model of impact can be deduced from (14) and is:
D(X)AV+D12| 13=Dolo (15)

wherel 13 andlg are the intensity of Dirac delta-function for the fordeg andRg. AV is
the variation of velocity at the impadkV = V+ —V~, whereV ~ is the velocity of the robot
before impact an®/ * its velocity after impact.

The impact is assumed to be inelastic with complete surfatieeofoot sole touching
the ground. This means that the velocity of the swing footdotimg the ground is zero after
impact. Two cases are possible after an impact: the right(frevious stance foot) takes
off the ground or both feet remain on the ground. In the firsiec#he vertical component
of the velocity of the taking-off foot just after an impact ste directed upwards and the
impulsive ground reaction in this foot equals zetgs= Os«1. In the second case, the right
foot velocity has to be zero just after an impact. The grouradipces impulsive forces in
both feet. This implies that the vertical component of theuisive ground reaction are
directed upwards. An impacting foot with zero velocity apeat, is a solution of the two
cases, there is no impact, the reaction forces on the twaakegsull and the velocity of the
two feet after impact is null.

For our numerical tests, for the studied bipedal robot, dhé/first case gives a valid
solution. The swing foot is zero velocity before the impawtd there is no impact) or the
previous stance foot does not remain on the ground aftemtpadt. Thus, the impact dy-



namic model is (see [29] and [30])

D(X)AV = —D1slg,, (16)
D{,V" = Ogx1 17
Vol  [Os1
o] = o] ao

These equations form a system of linear equations whichrdetes the impulse forcedss
and the velocity vector of the biped after impatt.

_ -1 _
l13 = (D},D'D12)  DiV (19)
V= —D Dy, (DL,D D) DLV 4V (20)
2.4.2 Calculation of the matri®1>

As the wrenchRys = [1?f13,12m; 4] is naturally expressed in the frarRg,. The velocities of
link 12 with respect to the biped veloci¥y, can be expressed as

2
W12

where®Py, is the vector linking the origin of the franf®, and the origin of the fram®&y
expressed in the frant&, J1» € R%12is the Jacobian matrix of the robat.,( represents
the effect of the joint velocities on the Cartesian velooityink 12. The velocities/1, and
w12 Must be expressed in the fraRe, thus we write:

12\/12 _
120‘)12

wherel?A, € R3%3 is the rotation matrix, which defines the orientation of ttamfeR, with
respect to the framB,. The expression (22) can be represented in matrix form as

20
Vo + P12
W12

+J12q (21)

A
12 127 0
Ao — Ao P12
12
03.3 Ao

[OVO} +123,, (22)
0000 12

A
2] = [ ] v
ThusD3, has the following structure
t
oum oo P “

As the wrenchRg is applied on the stance leg, in equation (I2),= [l 6x6 | O12x6]

R8%6, The matrixDr defines the actuated joint thus we havBr = [Ogx12 | 112x12]
RlBXlZ.

te
te
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2.4.3 Calculation of the inertia matri®

When no force is applied on the swing leg, the dynamic mod#l f&comes:

D(X)V +C(V,q) +G(X) = {Fﬂ (25)

Since the stance foot is assumed to remain in flat contactethdtant ground reaction
force/momentRy and the torque§ can be computed using the Newton-Euler algorithm
(see section 2.3). According to the method of Walker [318,rtiatrixD is calculated by the

algorithm of Newton-Euler, by noting from (14), that th&column ofD is equal to{ F\FO}
if

V =081, =0, V=&, Rig= Opx1

e € R s the unit vector, whose elements are zero excepit'trement which is equal
to 1. The vector€(V,q) andG(X) can be obtained in the same way tBathowever, for
the impact model the knowledge of these vectors are not gages

3 Definition of the walking cycle

Because a walking biped gait is a periodical phenomenon lgjective is to design a cyclic
biped gait. A complete walking cycle is composed of two pBasesingle support phase
and a double support phase which is modeled through passpect equations. The single
support phase begins with one foot which stays on the grouhikd whe other foot swings
from the rear to the front. We assume that the double suppadeis instantaneous. This
means that when the swing leg touches the ground the stamd¢akies off. There are two
facets to be considered for this problem. The definition éérence trajectories and the
method to determine a particular solution of it. This setti® devoted to the definition
of reference trajectories. The optimal process to chooseb#st solution of parameters,
allowing symmetric steps, from the point of view of a giveistciunctional will be described
in the next section.

3.1 Cyclic walking trajectory

Since the initial configuration is a double support configjora both feet are on the ground,
the twelve joint coordinates are not independent. Becéwesahsolute frame is attached to
the right foot we define the situation of the left foot byr,z¢) and the situation of the
middle of the hips(xn, Yn,zn,0r), both expressed iR, frame. (yit,z¢) are the Cartesian
coordinates, in the horizontal plane, of the left foot posit(x,yn,zs) is the hip position
andBy, defines the hip pitching motion. The two others parameteisntation for the link
between the hips in frontal and transverse planes, aredenesi to be equal to zero. The
values of the joint variables are solution of the inverseRiatics problem for a leg, which
may also be considered as a 6-link manipulator. The probtesvlved with a symbolic
software, (SYMORO+, see [26]).

Let us consider, for the cyclic walking gait, the currentpsitethe time interval0, T].
In order to deduce the final configuration of the bipedal raddotimet = T, we impose
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a symmetric role of the two legs, therefore from the initiahfigurationge = q(t = 0) in
double support, the final configuratiop = q(t = T) in double support is deduced as:

gr = Edo (26)

whereE € R'?*1? s an inverted diagonal matrix which describes the exchanfggs.

Taking into account the impulsive impadt6)-(18), we can compute the velocity vector
of the biped after the impact. Therefore, the joint ratesraftpact,g*, can be calculated
when the joint velocities before the impagqt;, is known. The use of the defined matkx
allows us to calculate the initial joint ratgs = q(t = 0) for the current step as:

do=EQq". (27)

By this way the conditions of cyclic motion are satisfied ané initial and final velocities
and the configuration are completly defineddgyandq.

3.2 Constraints

In order to insure that the trajectory is possible, many trairtgs have to be considered.

3.2.1 Magnitude constraints on position, velocities and e

— Each actuator has physical limits such that
IFi| —Timax<0, fori=1,..,12 (28)
wherel’; max denotes the maximum value for each actuator.

|G| — Gimax <0, for i=1,..,12 (29)

whereq; max denotes the maximum joint rate for each actuator.
— The upper and lower bounds of joints for the configurationsnduthe motion are:

0imin < 0 < Gi,max fori = 17 ceey 12 (30)

0i,min @aNdQ; max respectively stands for the minimum and maximum joint lmit

3.2.2 Geometric constraints in double support phase

— The distancel(hip, foot) between the foot in contact with the ground and the hip must
remain within a maximal value,e.,

d(hip, foot) < Ipjp. (31)

This condition must hold for final configurations of the daibupport phase.
— In order to avoid the internal collision of both feet throute lateral axis the heel and
the toe of the left foot must satisfy

Yheel < —a& and Yioe < —a (32)

with a > lzp andlp, is the width of right foot.
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3.2.3 Walking constraints

— During the single support phase to avoid collisions of thengieg with the stance leg
or with the ground, constraints on the positions of the famers of the swing foot are
defined.

— We must take into account the constraints on the groundiogeRy = [Rox, Roy, Ro)! for
the stance foot in single support phase as well as impulsiee$l 13 = [l1x, |13, l13,]t on
the foot touching the ground in instantaneous double supbase. The ground reaction
in single support and the impulsive forces at the impact rhasnside a friction cone
defined by the friction coefficient. This is equivalent to write

SRR < Ry (33)
\/ |f3y+ 125, < Ml (34)

The ground reaction forces in single support and the impeifsirces at the impact must
be directed upward, then the conditions of no take off areiced!:

Rox > 0 (35)
l13« > 0. (36)

— In order to maintain the balance in dynamic walking, the Z2dament Point which is
equivalent to the Center of Pressu@oP), (see [32], [33], [34]), of the biped'’s stance
foot must be within the interior of the support polygon. THena rectangular foot the
CoPmust satisfy

—I I
7” <CoOR < 5” (37)
—Lp<CoR <0 (38)
wherel, is the width and._, is the length of the feet.
— An average walking rate is imposed. Thus
VIT—d=0 (39)

whered is the step length and? is a desired speed of walking.

4 Parametric optimization
4.1 The cubic spline

The biped is driven by 12 torques, and its configuration igmgiin single support phase by
12 coordinates grouped in veciprTo define the joint evolution, cubic spline functions [35]
are used for constructing the joint trajectories. For eattj, (j =1,...,12) a cubic spline
function has the form:

0ja(t) if ti<t<ty
djo(t) if t2<t<ts
q;(t) = . . (40)

Gjna(t) if thg <t <ty
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wheren is the number of selected knots;1(t), . ..,$;n-1(t) are polynomials of third-order
such that:
3

Ojk(t) = goa‘j,ka —t)', fort € ty, teea], k=1,..,n—1 (41)

Whereaij'k are calculated such that the position, velocity and acatter are always con-
tinuous inty, ...,t,. The cubic spline functions are uniquely defined by spewifian initial
configurationgg, an initial velocity(o (both att =t; = 0), a final configuratiomt, and a fi-
nal velocitygr (both att =t, = T) in double support, witln— 2 intermediate configurations
in single support and the duration of this single support. Consequently, the garditions
will be defined by a small number of optimization parameters.

4.2 Optimization parameters

A parametric optimization problem has to be solved to desigiyclic bipedal gait with
successive single supports and passive impacts (no inpusiques are applied at impact).
For a step defined on the time inter{@| T] this problem depends on parameters to prescribe
then— 2 intermediate configurations, the final velodify in the single support phase and,
using the geometric model, the configuration of the bipechagict. Taking into account the
conditions(26) and (27) the minimal number of parameters necessary to define the join
motion are:

1. (n—2) x 12 parameters are needed to definerthe2 intermediate configurations in
single support phase.

2. The joint rates of the biped before the impact are alsacpited by twelve parameters,
g (i=1,..,12).

3. The position of the left foot denoted Kyit,z¢) in the horizontal plane as well as the
situation of the middle of the hips defined b, yn, z,,6r) in double support phase are
chosen as parameters.

Then the total number of parameters is #481—2) x 12. Let us remark that to define
the initial and final configurations for the step, when botl fieet touch the ground, nine
parameters are required. However, we define these confimusatith six parameters only.
These six parameters, see figure 2, are defined by the yegter{py p2 ps P4 Ps Ps)t With
the following geometric configuration data:

p1 : height of pelvis.

p2 : position of the trunk followingy in the frameR,.
ps : position of the trunk followingz in the frameRy.
p4 : orientation of the trunk in the sagittal plane.

ps : distance between the feet in the frontal plane.
ps : distance between the feet in the sagittal plane.

ok wNE

The three others parameters, orientation of the middleehtps in frontal and transverse
planes and the orientation of the left foot, are fixed to z&fwe duration of a stepl, is
arbitrarily fixed.

Four our numerical tests= 4 and then two intermediate configuratiag: andQint2
of the 3D biped in single support are considered.
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Fig. 2: The six parameters that define the initial configoratf the robot.

To summarize, considering ¢ andg of which the components equal the basis functions

gi (40) and their associated time derivativigsandd;, i = 1,...,12, we can write the joint
motion with respect to the set of parameteras
a=¢(Pt) (42)
q=9(Pt) (43)
a=9(Pt) (44)

where¢ is the vector of componenth;i(t) (40) defining the cubic splines for the joint
i=1,...,12. The chosen vector of optimization parametrsn be written:

P1 Qint1
P, Qint2

P= = 45
P3 ar (45)
Ps PG

4.3 Criterion

In the optimization process we consider, as cost functidntde integral of the norm of the
torque divided by the step length. In other words we are miiiitg a quantity proportional
to the lost energy in the actuators for a motion on a step aiténT. This general form of
minimal energy performance represents the losses by Jffe@sefor the electrical motors
to cover distance.

1 T
J:—/ rrdy (46)
d.Jo
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Taking into account the equality constraint (39) in (46) geeaalty function, the cost
functionalJ can be written as

1 T t d 2
:H/o Frdp+p (VOT - pe) (47)

wherep > 0 is a penalty factor.

4.4 Statement of the optimization problem to design a cyetitking gait for the 3D biped

Generally, many values of parameters can give a periodedaipgait satisfying constraints
(28)-(36). A parametric optimization process, that objective is toimire J under non-
linear constraints, is used to find a particular nominal orotvith the splines (40) as basis
functions. This optimization problem can be formally stb&s

Minimize J(P) . } (48)
subject tog;(P) <0 j=1,2,...,1

whereJ(P) is the increased cost functional to minimize witbonstraintgy; (P) < 0 to sat-
isfy. These constraints are given in section 3.2. The nealiconstrained problem is solved
by using the Matlab functiofmincon This optimization function provides an optimization
algorithm based on the Sequential Quadratic Programmi@P}SThere are forty-three
parameters for this nonlinear optimization problem: tweiour for the two intermediate
configurations in single support, twelve for the joint rabefore the impact and seven to
solve the inverse kinematics problem, subject to the caimdtr given by(28)-(36). The
optimization problem (48) is numerically solved by using #xact analytic gradient of the
cost functional with respect to the forty-three parameféng calculation of this gradient is
detailed in the following section.

5 Gradient of the cost functional

The optimization process uses the dynamic model (1) to kthe torque vectdr for
sampling timeg0, ..., 1, ..., T} and to evaluate the cost functional (46) on the current step.
ThenT is function ofq, g andg of which the components equal basis functigné0) and
their associated time derivativgsandd, i = 1,...,12:

=r(9,0,9) (49)

The general formula of the gradient of the cost functionahwespect to the vectd?

(45) is
03 _ 9 (1Y [T .
a—p—ﬁ(a)/ rd +_ea_P(/ rrd“)

_ {6_3‘ 03t 2! G_JT

50
0P 0P, 0P3 0P4 (50)

: ol . .
The calculation of each componentsg will be detailed now.
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0J 0J 0J 0J

— Calculation of—— = and— = : The covered distanaggs for a step does
0Py 0Qnz  OP2  OCint2 e . P

not depend on the intermediate configuratigRg andgin:z. Then the calculation of the

gradient of the cost functional with respectRg the way being similar foP,, leads to

a2 /T . or
—=— r d 51
P Poo O " 51

Tacking into account the relations (42), (43) and (44) anthwhe partial derivative
formulas for composed functions, the partial derivativé afith respect taji;; can be
written,

ar  ar aq or aq or ag

=t o -
OCint1 09 00tz 09 OCfintz 0 ACint1

(52)

— Calculation ofaal;] aan For the optimization problem the covered distadde not
3 T

defined with the velocity vectdyr. Furthermore via the algebraic matrix equation (16)
and (17) and the cyclic walking conditions (26) and (27), ithigal velocity vectorgo
after impact is function of the final velocity vector beforegact and the configuration
of the 3D biped in double support such that:

Jo = qo(Ps3,P4) = Qo(q1,Ps) (53)

In consequence using (42), (43), (44) and (53) the gradiktiteocost functional with
respect tdP; is:

0J 2 (T . or
3 = E/0 r - (54)
where,
or _oroq , oroq , or oq (55)
0qr 0qdqr 0q0qr 09 dqr
with,
09 _ 09 9o 09
9Gr 040 dqr  oqr’
094 _ 99 0% +ﬂ
04T 040 dGr = ogr’
04 _ 0 0qo 0%
0T 040 0qr = odr
— Calculation Ofaa_Fi = % The initial and final configurationgy andqr are found us-

ing the inverse geometric model thanks to the parametetsngs= [p1, P2, P3, P4, Ps, Pt
and to the relation (26). The covered distance is directhgtion ofgo andqgr. The cal-
culation of the gradient of the cost functional with respged®, is given by

1 6p6/ t t d
= rrdy+ — / r d +2 -VT 56
where,
or _or gq or aq or o9

57
e~ 3q0pa | 03 9pe 94 opa ®7)
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Since the vectopg is function of the initial and final configurationg andgr and using
the relation (53) the partial derivative qfwith respect ofpg can be written

a0 20 00 our 0 oo
dpc  0qodpc 0qr dpc 9o Opc’

9 oboas , ob oar | 0b o
0pc  00odps  0at Opc 9o OpG

and _ . o
04 _ 09 0qo , 0p dar , 0B 0o
dpc  0qo0pc 9qr Opc 0o OpG
The partial derivativeé?—o, using the equation (27) with the constant mafixcan be
G
rewritten such as
oty _ oG
dpc dpc
The algebraic impact equations (16) and (17) can be coretaigisuch as:
D Di \Vas DV~
= 58
|:Dt1206><6:| [Ma} |:06xl:| (°8)

The partial derivative of the matrix equation (58) verpdss:

i _
0D 0Dy, v+ D D, v+ obVv
aptG PG + opc | _ | 9Pc (59)
ol
=22 Osx6 | | l13 D, Opwe | | 3
apG 12 6pG OBxl
The matrix equation (59) can be rewritten
ov—' 6_D 0D1» Vas oDV~
s | _ _ | 9pc Opc dpc
% =W aDtlZ 0 I + (60)
apG apG 6% 6 13 06><1
with
1
D D12
W:
|:D12 06><6:|
and

W13 =D *(l1g.18— D12(D},D!D;2)"DY,D?)
W1 = (D},D'D1p) 'D},D* = Wi,
W22 = 7(D§_2D_1D12)_1.

Finally we have:

+ t
_GV —W]_]_ —aD VT + —aDlzl 13| — W]_zaDlZVjL +W11—6D VvV~
13 12 12 -
913 W [ 2wt T2, ) —w VE A Way 22
9pc #\ops ™ " ope B/ T ope *!9ps
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With the knowledge ofyr, the solutionsV* andl 3 of the impact equation (58) and
using (18) which stipulates that before impact the stanc¢ i® motionless such as

i
V™ = [01x3,01x3,G97 ]! whereq™ = g, variableg% is equal to:
G
aqt ( (6D _, , 0D ) oD}, )
— = Wy [ == (VT =V )+ —2113 ) —Wp—22V+ 62
apG 1 apG( ) apG 3 1 apG ((7:18)x1) ( )

To summarize, in this section 5 we have presented the magssary connections to calcu-

late the gradient of the cost functional. Of course the cdatjmn of this gradient is heavy.

However, we can remark that only the ten%(%, g—; andg—g have to be included in the

recursive dynamics computation defined by the Newton-Eederations. Their calculations

are detailed in [36].

In conclusion the algorithm to obtain an optimal cyclic watk gait for the biped can
be summarized by:

Step 1: Give initial values for each components of the patamectorP (45).

Step 2: With the parametePs = pg compute the initial configuration and from the equa-
tion (26) the final configuration.

Step 3: With the final configurations, the paramefeys= gt and the equations (16), (17)
and (27) compute the initial velocity.

Step 4: For timé¢; = 0 tot, = T, compute the spline functions (40) for the initial and final
configurations and the parameté?s = Qintz and P2 = Qinz. Compute their first and
second derives with respect to time.

Step 5: For sampling timg0, ..., t, ..., T }, solve recursively the inverse dynamics (2)-(11)
to compute the torques, the position of the Center of Pre€olP, the constraints and

or dar

Step 6: A Using the Euler method approximate the integrahefsiguare vector of torques
to compute the cost functional and its gradient respected@#rameter vectdr.

Step 7: If the condition to stop the optimization are satikfsop, in other case go to step
1 with a new parameter vector given by the optimization pssce

the partial derivative%,

6 Simulations results

To validate our proposed method, we present the results optimal motion for the biped
shown in figures 4-6. The desired trajectory was obtainedbyoptimization process pre-
sented in Section IV. We optimize the motion using both filitieerence and analytical
gradients of the cost functional. In the case of finite défere gradient, the algorithm was
terminated after 512 iterations (22858 function evaluegjoThe final value of the objective
function was 9354.792 and the total elapsed time was 3355.0@r the analytical gradient,
the algorithm was terminated after 407 iterations (1823&fion evaluations), with a total
computation time of 6822.48 s and the final value of the objedtinction 6295.95. The
introduction of the analytical gradient, showed a bettab#ity in the optimization process
and a good convergence to find a minimum local.

The convergence speed and the number of iterations are cedfos the optimization
process with the analytical gradient and finite differencadgents of the cost functional.
Figure 3 shows the number of iterations for both optimizapoocesses, while table 3 shows
a summary of the results for several walking rates.
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Fig. 3: Comparison of optimization processes: curves spording to the convergence behavior of the algo-
rithm with the analytical and finite difference gradiente aolid and dash-dotted, respectively.

Physical Parameters ~ Mafsg) Length(m)
Torso 40.55 d7 =0.120
Hip joints 2.04 linked to torso
Thigh 2.08 ds=0.3
Shin 1.75 d3 =0.3
Ankle joints 0.65 d; =0.105
Foot 1.64 Lp=02141,=0.136

Table 2: Parameters of the 3D biped, see figure 1

Figure 4 shows the evolution of the optimal motion for ongstgth duration, of a
single support, equal@s. For the simulation, we use the physical parameters givéabie
2. The bipedal robot has the height 08@mand the weight of 586 kg. The inertia of each
link are also taken into account in the dynamic model.

The results shown have been obtained With- 0.4 s. The optimal motion is such that
the step length is.@ m and the optimal velocity is In/s. The simulation of the optimal
motion for one step is illustrated in figure 4 and for 3 walkstgps in figure 9.

The normal components of the ground reaction forces of #recstfoot during one step
are presented in figure 5. The average vertical reactior fisr64781 N, which is coherent
with the weight of the robot which the mass equal866<g. The chosen friction coefficient
is0.7.

The figure 6 shows the evolution of the trajectory of the cenfepressureCoP con-
sidering one and two intermediate configurations. In botesathe evolution of th@oPis
always inside the rectangle determined py= 0.136mandL, = 0.214m, that is, the robot
maintains the balance during the motion. From figure 6, itmseen that considering two
intermediate configurations, the evolution of tAeP presents amplitudes lower. Because
the minimal distance between 6P and the boundary of the foot is large, smaller foot
is acceptable for this cyclic motion. The criterion costsidering only one intermediate
configuration, is 6472.51°-m-s.
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Fig. 4: Stick animation of a simulation of walking biped tagione step.
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Fig. 5: The ground reaction forces during the single supploase.
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Fig. 6: The evolution ofCoP trajectory: curves corresponding @oP trajectory considering one and two
intermediate configurations are dotted and solid, respygti

In figure 7, the evolution of the cost criteria is drawn as fiorcof several walking rates.
In terms of this criterion, a faster walking motion than 1.&1s not possible.
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Fig. 7: The evolution of the cost criteria with analyticabdrent.

The curves in figure 8, illustrate the evolution of torquestad each joint of stance and
swing leg as function of the walking rate. The torque costwaihg leg is less important
than the torque cost of stance leg. For slow motion, less@&m/s, the torque cost of the
stance hip is less important, while that for a walking gastéa than ® m/sthis torque cost
increases considerably.
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Fig. 8: The cost of the joint torques: curves correspondmghe torque costs of the ankle and knee are
dash-dotted and solid, respectively. The dotted curveesponds to the torque cost of the hip.
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Fig. 9: Cyclic motion of the bipedal robot.

Walking rate(m/s) Gradient Number of iterations ~ Function evaluations  Optimualue  Time (sec)
0.4 analytical 593 26461 7221.53 10677.15
’ finite differences 487 21235 7218.6 9071.95
05 analytical 398 17780 5807.57 6862.54
’ finite differences 401 17499 5809.45 7567.15
0.6 analytical 560 24964 5108.99 9488.86
’ finite differences 488 21260 4998.15 9280.12
0.7 analytical 449 20145 4794.33 7677.10
’ finite differences 772 33590 4815.49 17895.15
0.8 analytical 564 25212 5205.01 9689.82
’ finite differences 813 35356 6104.05 14738.13
0.9 analytical 438 19590 5961.33 7471.96
’ finite differences 895 39767 5984.20 5820.21
10 analytical 407 18236 6295.95 6822.48
’ finite differences 513 22858 9354.79 3355.92
11 analytical 452 20208 7130.79 7856.68
’ finite differences 429 18613 15856 8321.76

Table 3: Optimization results. For each optimal motion,weetor of initial parameters was the same for both

optimal process. All of the simulations were performed ompater equipped with a processo® HzCore

Duo from Intel.
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7 Conclusion

Optimal joint reference trajectories for cyclic walkingitgaof a 3D biped are found. A
methodology to design such optimal trajectories is dewedo@he definition of optimal
trajectories is useful to test a robot design. In order tceudassical optimization technique,
the optimal trajectory is described by a set of parameteeschwose to define the evolution
of the actuated relative angle as spline functions. A cysdilttion is desired. The number
of the optimization variables is reduced by taking into actoof the cyclicity condition
explicitly.

Some inequality constraints such as the limits on the tarquel the velocities, the con-
dition of no sliding during motion and impact, some limitstbie motion of the free leg are
taken into account. The cost functional is calculated fromintegral of the torques norm.
The torques are computed for sampling times using the ievaysamic model. This model
is obtained with the recursive Newton-Euler algorithm. Tékerence frame is connected to
the stance foot.

In the optimization process, a calculation of the gradignaffinite approximation can
generate numerical errors for the Hessian computatiom Thenprove the convergence of
the optimization algorithm, the explicit analytical gradt with respect to the optimization
parameters is calculated using the recursive equatiorfeealytnamic model. Optimal mo-
tions for a given duration of the step have been obtained.stdylength and the advance
velocity are the result of the optimization process. The etical results obtained are realis-
tic with respect to the size of the walker under study. Thénagitmotion for a given motion
velocity can also be studied, in this case the motion veldsitonsidered as a constraint.

The proposed method to define an optimal motion will be testmusidering a sub-phase
of rotation of the supporting phase about the toe, closeutodn. Another perspective is to
evaluate the gradient of constraints with respect to thiemipation parameters.
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